2017年山东省枣庄市中考数学试卷(含解析).docx
《2017年山东省枣庄市中考数学试卷(含解析).docx》由会员分享,可在线阅读,更多相关《2017年山东省枣庄市中考数学试卷(含解析).docx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017年山东省枣庄市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1下列计算,正确的是()A=B|2|=C =2D()1=22将数字“6”旋转180,得到数字“9”,将数字“9”旋转180,得到数字“6”,现将数字“69”旋转180,得到的数字是()A96B69C66D993如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A15B22.5C30D454实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A2a+bB2abCbDb5
2、如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A甲B乙C丙D丁6如图,在ABC中,A=78,AB=4,AC=6,将ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()ABCD7如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE若AB的长为2,则FM的长为()A2BCD18如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,
3、分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则ABD的面积是()A15B30C45D609如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y=(x0)的图象经过顶点B,则k的值为()A12B27C32D3610如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A2rBr3Cr5D5r11如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D
4、分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A(3,0)B(6,0)C(,0)D(,0)12已知函数y=ax22ax1(a是常数,a0),下列结论正确的是()A当a=1时,函数图象经过点(1,1)B当a=2时,函数图象与x轴没有交点C若a0,函数图象的顶点始终在x轴的下方D若a0,则当x1时,y随x的增大而增大二、填空题(本大题共6小题,每小题4分,共24分)13化简:= 14已知关于x的一元二次方程ax22x1=0有两个不相等的实数根,则a的取值范围是 15已知是方程组的解,则a2b2= 16如图,在ABCD中,AB为O的直径,O与DC相切于点E,与AD
5、相交于点F,已知AB=12,C=60,则的长为 17如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为 18在矩形ABCD中,B的角平分线BE与AD交于点E,BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= (结果保留根号)三、解答题(本大题共7小题,共60分)19x取哪些整数值时,不等式5x+23(x1)与x2都成立?20为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门)对调查结果进行整理,绘制成如下两幅不完整的统计
6、图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率21如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,4)(1)请在图中,画出ABC向左平移6个单位长度后得到的A1B1C1; (2)以点O为位似中心,将ABC缩小为原来的,得到A2B2C2,请在图中y轴右侧,画出A2B2C2,并求出A2C2B2的正弦值22如
7、图,在ABC中,C=90,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F(1)试判断直线BC与O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留)23我们知道,任意一个正整数n都可以进行这样的分解:n=pq(p,q是正整数,且pq),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称pq是n的最佳分解并规定:F(n)=例如12可以分解成112,26或34,因为1216243,所以34是12的最佳分解,所以F(12)=(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方
8、数求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1xy9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值24已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP
9、平分AEC时,设AB=a,BP=b,求a:b及AEC的度数25如图,抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标2017年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1下列计算,正确的
10、是()A=B|2|=C =2D()1=2【考点】24:立方根;1A:有理数的减法;22:算术平方根;6F:负整数指数幂【分析】根据立方根的概念、二次根式的加减运算法则、绝对值的性质、负整数指数幂的运算法则计算,即可判断【解答】解:=2=,A错误;|2|=,B错误;=2,C错误;()1=2,D正确,故选:D2将数字“6”旋转180,得到数字“9”,将数字“9”旋转180,得到数字“6”,现将数字“69”旋转180,得到的数字是()A96B69C66D99【考点】R1:生活中的旋转现象【分析】直接利用中心对称图形的性质结合69的特点得出答案【解答】解:现将数字“69”旋转180,得到的数字是:69
11、故选:B3如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A15B22.5C30D45【考点】JA:平行线的性质【分析】过A点作ABa,利用平行线的性质得ABb,所以1=2,3=4=30,加上2+3=45,易得1=15【解答】解:如图,过A点作ABa,1=2,ab,ABb,3=4=30,而2+3=45,2=15,1=15故选:A4实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A2a+bB2abCbDb【考点】73:二次根式的性质与化简;29:实
12、数与数轴【分析】直接利用数轴上a,b的位置,进而得出a0,ab0,再利用绝对值以及二次根式的性质化简得出答案【解答】解:由图可知:a0,ab0,则|a|+=a(ab)=2a+b故选:A5如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A甲B乙C丙D丁【考点】W7:方差;W1:算术平均数【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加【解答】解:=,从甲和丙中选择一人参加比赛,=,选择甲参赛,故选:A6如图,在AB
13、C中,A=78,AB=4,AC=6,将ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()ABCD【考点】S8:相似三角形的判定【分析】根据相似三角形的判定定理对各选项进行逐一判定即可【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C7如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点
14、F处,折痕为BE若AB的长为2,则FM的长为()A2BCD1【考点】PB:翻折变换(折叠问题)【分析】根据翻折不变性,AB=FB=2,BM=1,在RtBFM中,可利用勾股定理求出FM的值【解答】解:四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,FB=AB=2,BM=1,则在RtBMF中,FM=,故选:B8如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则ABD的面积是()A15B30C45D60【考点】KF:
15、角平分线的性质【分析】判断出AP是BAC的平分线,过点D作DEAB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解【解答】解:由题意得AP是BAC的平分线,过点D作DEAB于E,又C=90,DE=CD,ABD的面积=ABDE=154=30故选B9如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y=(x0)的图象经过顶点B,则k的值为()A12B27C32D36【考点】L8:菱形的性质;G6:反比例函数图象上点的坐标特征【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可【解
16、答】解:A(3,4),OA=5,四边形OABC是菱形,AO=CB=OC=AB=5,则点B的横坐标为35=8,故B的坐标为:(8,4),将点B的坐标代入y=得,4=,解得:k=32故选C10如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A2rBr3Cr5D5r【考点】M8:点与圆的位置关系;KQ:勾股定理【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论【解答】解:给各点标上字母,如图所示AB=2,AC=AD=,AE=3,AF=,AG=AM=AN=5
17、,r3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内故选B11如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A(3,0)B(6,0)C(,0)D(,0)【考点】F8:一次函数图象上点的坐标特征;PA:轴对称最短路线问题【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D的坐标,结合点C、D的坐标求出直线CD的解析式,令y=0即可求出x的值,从而得出点P的坐标(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公
18、式求出点C、D的坐标,根据对称的性质找出点D的坐标,根据三角形中位线定理即可得出点P为线段CD的中点,由此即可得出点P的坐标【解答】解:(方法一)作点D关于x轴的对称点D,连接CD交x轴于点P,此时PC+PD值最小,如图所示令y=x+4中x=0,则y=4,点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=6,点A的坐标为(6,0)点C、D分别为线段AB、OB的中点,点C(3,2),点D(0,2)点D和点D关于x轴对称,点D的坐标为(0,2)设直线CD的解析式为y=kx+b,直线CD过点C(3,2),D(0,2),有,解得:,直线CD的解析式为y=x2令y=x2中y=0,则0
19、=x2,解得:x=,点P的坐标为(,0)故选C(方法二)连接CD,作点D关于x轴的对称点D,连接CD交x轴于点P,此时PC+PD值最小,如图所示令y=x+4中x=0,则y=4,点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=6,点A的坐标为(6,0)点C、D分别为线段AB、OB的中点,点C(3,2),点D(0,2),CDx轴,点D和点D关于x轴对称,点D的坐标为(0,2),点O为线段DD的中点又OPCD,点P为线段CD的中点,点P的坐标为(,0)故选C12已知函数y=ax22ax1(a是常数,a0),下列结论正确的是()A当a=1时,函数图象经过点(1,1)B当a=2时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 山东省 枣庄市 中考 数学试卷 解析
限制150内