中考数学专题复习教学案-方案设计型(附答案).doc
《中考数学专题复习教学案-方案设计型(附答案).doc》由会员分享,可在线阅读,更多相关《中考数学专题复习教学案-方案设计型(附答案).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、方案设计型应用方程(组)不等式(组)解决方案设计型例1(2009益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出解析:此类试题一般涉及二元一次方程组、不等式组在实际问题中的应用,以两人的用的总钱数为等量关系,可以列出方程组第二问注意“不少”的含义可以根据总钱数和钢笔与笔记本的数量关系列出不等式组
2、解:(1)设每支钢笔x元,每本笔记本y元,依题意得: 解得:所以,每支钢笔3元,每本笔记本5元 (2)设买a支钢笔,则买笔记本(48a)本依题意得:,解得:,所以,一共有种方案即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24点评:解决问题的基本思想是从实际问题中构建数学模型,寻找题目中的等量关系,(或不等关系)列出相应的方程(或不等式组)同步检测:1 (2009安顺)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2
3、)请你帮助小明算一算,用哪种方式购票更省钱?说明理由 2.(2009益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出练习参考答案:1. 解:(1)设成人人数为x人,则学生人数为(12-x)人 则35x + (12 x)= 350 解得:x = 8 故:学生人数为12 8 = 4 人, 成人人数为
4、8人(2)如果买团体票,按16人计算,共需费用:350616 = 336元 336350 所以,购团体票更省钱所以,有成人8人,学生4人;购团体票更省钱2. 解:(1)设每支钢笔x元,每本笔记本y元,依题意得: 解得:所以,每支钢笔3元,每本笔记本5元 (2)设买a支钢笔,则买笔记本(48a)本依题意得:,解得:,所以,一共有种方案即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24 二、应用函数设计方案问题:例2(2009安徽)(1)请说明图中、两段函数图象的实际意义 (2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在
5、下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大解析:此类试题结合函数图像所提供的信息,对信息加工应用,可以求出函数解析式,分析题意,根据:销售利润=日最高销售量每千克的利润(每千克的利润零售价批发价),由此整理可得到关于的二次函数,解:()图表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发;图表示批发量高于60kg的该种水果,可
6、按4元/kg批发 (2)由题意得:,函数图象略由图可知资金金额满足240w300时,以同样的资金可批发到较多数量的该种水果(3)设日最高销售量为xkg(x60)则由图日零售价p满足:,于是销售利润,当x80时,此时p6即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元点评:注重数形结合,领会通过图形所传递的信息,以及二次函数顶点的意义的理解与应用同步检测:3:(2009四川省南充市)某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费假设顾客甲一个月手机上网的时
7、间共有分钟,上网费用为元(1)分别写出顾客甲按A、B两种方式计费的上网费元与上网时间分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象;(2)如何选择计费方式能使甲上网费更合算?10100y/元Ox/分2050500P方式A方式B10100y/元O(图7)x/分练习参考答案:练习3。(1)方式A:,方式B:,两个函数的图象如图所示 (2)解方程组 得所以两图象交于点P(500,50)由图象可知:当一个月内上网时间少于500分时,选择方式A省钱;当一个月内上网时间等于500分时,选择方式A、方式B一样;当一个月内上网时间多于500分时,选择方式B省钱三、 设计图形剪拼方案例3(2009
8、浙江省温州市)在所给的99方格中,每个小正方形的边长都是1按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上 (1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数(注:图甲、图乙在答题纸上)解析:本题为图案设计题,在设计前一定要注意到要求,除了要满足所画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上外,还要满足平行四边形的周长是否为整数的要求点评:本题考查的是设计图形题,在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.同步检测:4。 (2009河南)为创建绿色校园,学校
9、决定对一块正方形的空地进行种植花草,现向学生征集设计图案图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形种植花草部分用阴影表示请你在图、图、图中画出三种不同的的设计图案提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图、图只能算一种练习参考答案:解:下面给出参考方案:四、 设计测量方案(解直角三角形应用)例4(2009济宁)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪皮尺
10、小镜子(1)小华利用测角仪和皮尺测量塔高 图1为小华测量塔高的示意图她先在塔前的平地上选择一点,用测角仪测出看塔顶的仰角,在点和塔之间选择一点,测出看塔顶的仰角,然后用皮尺量出两点的距离为m,自身的高度为m请你利用上述数据帮助小华计算出塔的高度(,结果保留整数)(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影的长为m(如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题: 在你设计的测量方案中,选用的测量工具是: ; 要计算出塔的高,你还需要测量哪些数据? 解析:本题以解直角三角形为依托,通过设计实际的测量活动,使学生能够灵活的应用所学知识,解决实际生活的问题,第二问是
11、在解决了第一问的基础上让学生另行设计一种测量方案,但是要注意提供的工具和数据的选择使用解:(1)设的延长线交于点,长为,则,解得太子灵踪塔的高度为(2) 测角仪皮尺; 站在P点看塔顶的仰角自身的高度 (注:答案不唯一)点评:本类试题关键在于画出直角三角形,再分析角边关系,选择合适的三角函数求解,另外要注意设计的方案因为工具的选择不同而方法的多样性,还经常与相似三角形结合同步检测:5。(2009四川省成都市)某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度如图,他们先在点C测得教学楼AB的顶点A的仰角为30,然后向教学楼前进60米到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 复习 教学 方案设计 答案
限制150内