微分中值定理与导数应用习题解答.doc
《微分中值定理与导数应用习题解答.doc》由会员分享,可在线阅读,更多相关《微分中值定理与导数应用习题解答.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3章 微分中值定理与导数应用习题解答 1.验证中值定理的正确性(1) 验证罗尔定理对函数y=ln sin x 在区间上的正确性. 解 因为y=ln sin x 在区间上连续, 在内可导, 且, 所以由罗尔定理知, 至少存在一点, 使得y(x)=cot x=0. 由y(x)=cot x=0得,因此确有, 使y(x)=cot x=0.(2) 验证拉格朗日中值定理对函数y=4x3-5x2+x-2在区间0, 1上的正确性. 解 因为y=4x3-5x2+x-2在区间0, 1上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点x(0, 1), 使. 由y(x)=12x2-10x+1=0
2、得. 因此确有, 使. (3) 对函数f(x)=sin x及F(x)=x +cos x在区间上验证柯西中值定理的正确性.解 因为f(x)=sin x及F(x)=x +cos x在区间上连续, 在可导, 且F(x)=1-sin x在内不为0, 所以由柯西中值定理知至少存在一点, 使得 . 令, 即. 化简得. 易证, 所以在内有解, 即确实存在, 使得 . 2. 证明题:(1)证明恒等式: (-1x1). 证明 设f(x)= arcsin x+arccos x. 因为 , 所以f (x)C, 其中C是一常数. 因此, 即. (2)若方程a0xn+a1xn-1+ + an-1x=0有一个正根x0,
3、 证明方程 a0nxn-1+a1(n-1)xn-2 + +an-1 =0 必有一个小于x0的正根.证明 设F(x)=a0xn+a1xn-1+ + an-1x, 由于F(x)在0, x0上连续, 在(0, x0)内可导, 且F(0)=F(x0)=0, 根据罗尔定理, 至少存在一点x(0, x0), 使F (x)=0, 即方程 a0nxn-1+a1(n-1)xn-2 + +an-1 =0 必有一个小于x0的正根.(3)若函数f(x)在(a, b)内具有二阶导数, 且f(x1)=f(x2)=f(x3), 其中ax1x2x3b0, n1, 证明: nbn-1(a-b)an-bnnan-1(a-b) .
4、证明 设f(x)=xn, 则f(x)在b, a上连续, 在(b, a)内可导, 由拉格朗日中值定理, 存在x(b, a ), 使 f(a)-f(b)=f (x)(a-b), 即an-bn=nx n-1(a-b). 因为 nbn-1(a-b)nx n-1(a-b) nan-1(a-b),所以 nbn-1(a-b)an-bn0时, ;(2)当x4时, 2xx2;证明 (1)设, 则f (x)在0, +)内是连续的. 因为 , 所以f (x)在(0, +)内是单调增加的, 从而当x0时f (x)f (0)=0, 即 , 也就是 .(2)设f(x)=x ln2-2ln x, 则f (x)在4, +)内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分 中值 定理 导数 应用 习题 解答
限制150内