2017年全国统一高考数学试卷(理科)及答案.doc
《2017年全国统一高考数学试卷(理科)及答案.doc》由会员分享,可在线阅读,更多相关《2017年全国统一高考数学试卷(理科)及答案.doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2017 年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1(5 分)已知集合 A=x|x1,B=x|3 1,则()xAAB=x|x02(5 分)如图,正方形ABCD 内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是(BAB=R CAB=x|x1DAB=)ABCD3(5 分)设有下面四个命题p1:若复数 z 满足 R,则 zR;p :若复数 z 满足 z R,则 zR;22p :若复数 z ,z 满足 z
2、 z R,则 z = ;3121 21p4:若复数 zR,则 R其中的真命题为()Ap ,p Bp ,pCp ,pDp ,p131423244(5 分)记 S 为等差数列a 的前 n 项和若 a +a =24,S =48,则a 的公差为()nn456nA1B2C4D85(5 分)函数 f(x)在(,+)单调递减,且为奇函数若f(1)=1,则满足1f(x2)1 的 x 的取值范围是(A2,2 B1,1 C0,46(5 分)(1+ )(1+x) 展开式中 x 的系数为(A15 B20 C30 D35)D1,3)627(5 分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组
3、成,正方形1 的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10 B12 C14 D168(5 分)如图程序框图是为了求出满足 3 2 1000 的最小偶数 n,那么在和两个空nn白框中,可以分别填入()AA1000 和 n=n+1 BA1000 和 n=n+2CA1000 和 n=n+1 DA1000 和 n=n+29(5 分)已知曲线 C :y=cosx,C :y=sin(2x+),则下面结论正确的是()12A把 C 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得1到曲线 C2B把 C 上各点的横坐
4、标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得1到曲线 C2C把 C 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得12 到曲线 C2D把 C 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得1到曲线 C210(5 分)已知 F 为抛物线 C:y =4x 的焦点,过 F 作两条互相垂直的直线 l ,l ,直线 l 与 C 交于 A、B2121两点,直线 l 与 C 交于 D、E 两点,则|AB|+|DE|的最小值为()2A16 B14 C12 D1011(5 分)设 x、y、z 为正数,且 2 =
5、3 =5 ,则()xyzA2x3y5z B5z2x3y C3y5z2x D3y2x5z12(5 分)几位大学生响应国家的创业号召,开发了一款应用软件为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一项是 2 ,接下来的两项是 2 ,2 ,再接下来的三项是0012 ,2 ,2 ,依此类推求满足如下条件的最小整数N:N100 且该数列的前 N 项和为 2 的整数幂那么012该款软件的激活码是()A440 B330 C220 D110二、填空题:本题共 4 小题,每
6、小题 5 分,共 20 分13(5 分)已知向量 , 的夹角为 60,| |=2,| |=1,则| +2 |=14(5 分)设 x,y 满足约束条件,则 z=3x2y 的最小值为15(5 分)已知双曲线 C:=1(a0,b0)的右顶点为 A,以 A 为圆心,b 为半径作圆 A,圆A 与双曲线 C 的一条渐近线交于 M、N 两点若MAN=60,则 C 的离心率为16(5 分)如图,圆形纸片的圆心为 O,半径为 5cm,该纸片上的等边三角形 ABC 的中心为 OD、E、F 为圆 O 上的点,DBC,ECA,FAB分别是以 BC,CA,AB 为底边的等腰三角形沿虚线剪开后,分别以 BC,CA,AB
7、为折痕折起DBC,ECA,FAB,使得 D、E、F 重合,得到三棱锥当ABC的边长变化时,所得三棱锥体积(单位:cm )的最大值为33 三、解答题:共70 分解答应写出文字说明、证明过程或演算步骤第1721 题为必考题,每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答17(12 分)ABC 的内角 A,B,C 的对边分别为 a,b,c,已知ABC 的面积为(1)求 sinBsinC;(2)若 6cosBcosC=1,a=3,求ABC 的周长4 18(12 分)如图,在四棱锥 PABCD 中,ABCD,且BAP=CDP=90(1)证明:平面 PAB平面 PAD;(2)若 PA=
8、PD=AB=DC,APD=90,求二面角 APBC 的余弦值5 19(12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 N(, )2(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在(3,+3)之外的零件数,求 P(X1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下
9、面是检验员在一天内抽取的 16 个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得 =9.97,s=0.212,其中 x 为抽取的第 ii个零件的尺寸,i=1,2,16用样本平均数 作为 的估计值 ,用样本标准差 s 作为 的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除( 3 +3 )之外的数据,用剩下的数据估计 和 (精确到 0.01)附:若随机变量 Z 服从正态分布 N(, ),则 P(3Z+3)=0.9974,0.9974 0.9
10、592,2160.096 20(12 分)已知椭圆 C:+=1(ab0),四点 P (1,1),P (0,1),P (1, ),P (1,1234)中恰有三点在椭圆 C 上(1)求 C 的方程;(2)设直线 l 不经过 P 点且与 C 相交于 A,B 两点若直线 P A 与直线 P B 的斜率的和为1,证明:l222过定点7 21(12 分)已知函数 f(x)=ae +(a2)e x2xx(1)讨论 f(x)的单调性;(2)若 f(x)有两个零点,求 a 的取值范围8 选修 4-4,坐标系与参数方程22(10 分)在直角坐标系xOy 中,曲线 C 的参数方程为,(为参数),直线 l 的参数方程
11、为,(t 为参数)(1)若 a=1,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 距离的最大值为,求 a选修 4-5:不等式选讲23已知函数 f(x)=x2+ax+4,g(x)=|x+1|+|x1|(1)当 a=1 时,求不等式 f(x)g(x)的解集;(2)若不等式 f(x)g(x)的解集包含1,1,求 a 的取值范围9 2017 年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1(5 分)(2017新课标)已知集合 A=x|x1,B=x|3 1,则()xAAB=
12、x|x0【考点】1E:交集及其运算【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合BAB=R CAB=x|x1DAB=【分析】先分别求出集合 A 和 B,再求出 AB 和 AB,由此能求出结果【解答】解:集合 A=x|x1,B=x|3 1=x|x0,xAB=x|x0,故 A 正确,D 错误;AB=x|x1,故 B 和 C 都错误故选:A【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用2(5 分)(2017新课标)如图,正方形 ABCD 内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方
13、形内随机取一点,则此点取自黑色部分的概率是()ABCD【考点】CF:几何概型菁优网版权所有【专题】35 :转化思想;4O:定义法;5I :概率与统计10 【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为 2,则黑色部分的面积 S= ,则对应概率 P=故选:B= ,【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键3(5 分)(2017新课标)设有下面四个命题p1:若复数 z 满足 R,则 zR;p :若复数 z 满足 z R,则 zR;22
14、p :若复数 z ,z 满足 z z R,则 z = ;3121 21p4:若复数 zR,则 R其中的真命题为()Ap ,p Bp ,pCp ,pDp ,p13142324【考点】2K:命题的真假判断与应用;A2:复数的基本概念;A5:复数代数形式的乘除运算【专题】2A :探究型;5L :简易逻辑;5N :数系的扩充和复数【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案【解答】解:若复数 z 满足 R,则 zR,故命题 p 为真命题;1p :复数 z=i 满足 z =1R,则 z R,故命题 p 为假命题;222p :若复数 z =i,z =2i 满足 z z R,但
15、z ,故命题 p 为假命题;3121 213p :若复数 zR,则 =zR,故命题 p 为真命题44故选:B【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题4(5 分)(2017新课标)记 S 为等差数列a 的前 n 项和若 a +a =24,S =48,则a 的公差为()nn456nA1B2C4D811 【考点】85:等差数列的前 n 项和;84:等差数列的通项公式【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列【分析】利用等差数列通项公式及前 n 项和公式列出方程组,求出首项和公差,由此能求出a
16、的公差n【解答】解:S 为等差数列a 的前 n 项和,a +a =24,S =48,nn456,解得 a =2,d=4,1a 的公差为 4n故选:C【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用5(5 分)(2017新课标)函数 f(x)在(,+)单调递减,且为奇函数若f(1)=1,则满足1f(x2)1 的 x 的取值范围是(A2,2 B1,1 C0,4)D1,3【考点】3P:抽象函数及其应用菁优网版权所有【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用【分析】由已知中函数的单调性及奇偶性,可将不等式1f(x2)1 化为1
17、x21,解得答案【解答】解:函数 f(x)为奇函数若 f(1)=1,则 f(1)=1,又函数 f(x)在(,+)单调递减,1f(x2)1,f(1)f(x2)f(1),1x21,解得:x1,3,故选:D【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档6(5 分)(2017新课标)(1+ )(1+x) 展开式中 x 的系数为()62A15 B20 C30 D3512 【考点】DC :二项式定理的应用【专题】35 :转化思想;4R :转化法【分析】直接利用二项式定理的通项公式求解即可【解答】解:(1+ )(1+x) 展开式中:6若(1+ )=(1+x )提供常数项 1
18、,则(1+x) 提供含有 x 的项,可得展开式中 x 的系数:2622若(1+ )提供 x 项,则(1+x) 提供含有 x 的项,可得展开式中 x 的系数:2642由(1+x) 通项公式可得6可知 r=2 时,可得展开式中 x 的系数为2可知 r=4 时,可得展开式中 x 的系数为2(1+ )(1+x) 展开式中 x 的系数为:15+15=3026故选 C 【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用属于基础题7(5 分)(2017 新课标)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有
19、若干个是梯形,这些梯形的面积之和为()A 10 B 12 C 14 D 16【考点】L!:由三视图求面积、体积菁优网版权所有【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,13 该立体图中只有两个相同的梯形的面,S = 2(2+4)=6,梯形这些梯形的面积之和为 62=12,故选:B【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题8(5 分)(2017新课标)如图程序框图是为了求出满足 3 2 1000 的最小偶数
20、 n,那么在和nn两个空白框中,可以分别填入()AA1000 和 n=n+1 BA1000 和 n=n+2CA1000 和 n=n+1 DA1000 和 n=n+2【考点】EF:程序框图菁优网版权所有【专题】11 :计算题;38 :对应思想;49 :综合法;5K :算法和程序框图【分析】通过要求 A1000 时输出且框图中在“否”时输出确定“”内不能输入“A1000”,进而通过偶数的特征确定 n=n+214 【解答】解:因为要求 A1000 时输出,且框图中在“否”时输出,所以“”内不能输入“A1000”,又要求 n 为偶数,且 n 的初始值为 0,所以“”中 n 依次加 2 可保证其为偶数,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 全国 统一 高考 数学试卷 理科 答案
限制150内