2003年高考.北京卷.理科数学试题及答案.doc
《2003年高考.北京卷.理科数学试题及答案.doc》由会员分享,可在线阅读,更多相关《2003年高考.北京卷.理科数学试题及答案.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 绝密启用前2003 年普通高等学校招生全国统一考试数 学(理工农医类)(北京卷)本试卷分第卷(选择题)第卷(非选择题)两部分,共150 分,考试时间 120 分钟。第卷(选择题 共 50 分)注意事项:1答第卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上.2每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式:1正棱台、圆台的侧面积公式1sina cos b = sin(a + b) + sin(a - b)S = (c + c)l2
2、2台侧1cosa sin b = sin(a + b) - sin(a - b)c c其中 、 分别表示上、下底面21cosa cos b = cos(a + b) + cos(a - b)周长, 表示斜高或母线长.l214sina sin b = - cos(a + b) - cos(a - b)pV = R球体的体积公式:3,其中23球R 表示球的半径.一、选择题:本大题共10 小题,每小题5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合要求的.1设集合 A= x | x -1 0, B = x | log x 0 |,则A B2等于()2Ax | x 1Cx | x 0Dx
3、 | x 112设 y= 4 , y = 8 , y = ( )0.90.44-1.5 ,则()2123Ay y yBy y yCy y yDy y y31221312313235p3“cos 2a = -”是“a p= k +,k Z ”的212 A必要非充分条件C充分必要条件B充分非必要条件D既非充分又非必要条件4已知,是平面,m,n 是直线.下列命题中不正确的是()A若 mn,m,则 nC若 m,m,则B若 m,=n,则 mnD若 m,m b ,则r cos 2q 2r cosq 1-=表示的曲线是5极坐标方程A圆(2B椭圆C抛物线的最小值是C4D双曲线D56若 zC | z + 2 -
4、 2i |= 1,则 | z - 2 - 2i |且)A2B37如果圆台的母线与底面成 60角,那么这个圆台的侧面积与轴截面面积的比为(322 33122ppA pBCpD8从黄瓜、白菜、油菜、扁豆4 种蔬菜品种中选出 3 种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有A24 种 B18 种()C12 种D6 种3 + 2 + (-1) (3 - 2 ) -n-nn-n-na的通项公式是a=,n = 1,2,L,则9若数列2nnlim(a + a +L+ a )等于12nn11241724192425DABC2410某班试用电子投票系统选举班干部候选人.全班 k 名同学
5、都有选举权和被选举权,他们的编号分别为 1,2,k,规定:同意按“1”,不同意(含弃权)按“0”,令1,第 号同学同意第 号同学当选.ija = 0,第i号同学不同意第j号同学当选.ij其中 i=1,2, ,k,且 j=1,2,k,则同时同意第 1,2 号同学当选的人数为()A aB a+ a +L + a + a + a +L + a11121k21222kk 2+ a +L + a + a + a +L + a11211k1222C a a+ a a +L + a a11 1221 22k1 k 2 2,(x) = lg(1+ x2), g(x) = 0| x | 1.- x + 2, x
6、 1.x2y2= 1右顶点为顶点,左焦点为焦点的抛物线的方程是13如图,已知底面半径为 r 的圆柱被一个平面所截,剩下部分母线长的最大值为 a,最小值为 b,那么圆柱被截后剩下部分的体积是.和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为.已知函数 f(x) = cos x - 2 sin x cos x - sin x.44()求 f (x) 的最小正周期;()若 x0, 2.16(本小题满分 13 分)已知数列 a 是等差数列,且an1123()求数列 a 的通项公式;n ()令b求数列nnnn17(本小题满分 15 分) 如图,正三棱柱 ABCA B C 的底面边长的 3,侧棱
7、 AA =11111111118(本小题满分 15 分)如图,椭圆的长轴 A A 与 x 轴平行,短轴 B B 在 y 轴上,中心为 M(0,r)(b121 2()写出椭圆的方程,求椭圆的焦点坐标及离心率;交椭圆于两点C(x , y ), D(x , y )(y 0);直线;1112222点G(x , y ), H (x , y )(y 0).求证:=3433444124()对于()中的 C,D,G,H,设 CH 交 x 轴于点 P,GD 交 x 轴于点 Q.(证明过程不考虑 CH 或 GD 垂直于 x 轴的情形)19(本小题满分 14 分) 有三个新兴城镇,分别位于A,B,C 三点处,且AB
8、=AC=a,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在 BC 的垂直平分线上的 P 点处,(建立坐标系如图)()若希望点 P 到三镇距离的平方和为最小,点 P 应位于何处?20(本小题满分 14 分)(i) f()证明:对任意的x()在区间1,1上是否存在满足题设条件的奇函数 y = f (x),且使得121| f (u) - f (v) |=| u - v |,当u,v ,1 .2 数学试题(理工农医类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题 5 分,满分 50 分.1A 2D 3A 4B 5D 6B 7C 8C 9C 10C二、填空题:本题考查
9、基本知识和基本运算.每小题 4 分,满分 16 分.14f (x); g(x)y 22pr2(a + b) 14= -36( - 4)x111213+ 4p三、解答题:本大题共 6 小题,共 84 分.解答应写出文字说明,证明过程或演算步骤.15本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13 分. ()解:因为 f(x) = cos x - 2 sin xcos x - sin x44= (cos x + sin x)(cos x - sin x) - sin 2x2222p= cos 2x - sin 2x = 2 cos(2x + )42pf
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2003 年高 北京 理科 数学试题 答案
限制150内