《2.3.2_双曲线的简单几何性质_(1-2).ppt》由会员分享,可在线阅读,更多相关《2.3.2_双曲线的简单几何性质_(1-2).ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3.22.3.2 双曲线简单的几何性质双曲线简单的几何性质 (一一)定义定义定义定义图象图象图象图象方程方程方程方程焦点焦点焦点焦点a.b.c a.b.c 的关系的关系的关系的关系|MF1|-|MF2|=2a(2aa0e 1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:)定义:(2)e e的范围的范围:(3)e e的含义:的含义:(4)等轴双曲线的离心率等轴双曲线的离心率e=?(5)xyo-aab-b关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率A1(-a,0),),A2(a,0)A1(0,-a),),A2(0,a)关于关于
2、x轴、轴、y轴、原点对称轴、原点对称渐近线渐近线.yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率yxOA2B2A1B1.F1F2yB2A1A2 B1 xO.F2F1A1(-a,0),),A2(a,0)B1(0,-b),),B2(0,b)F1(-c,0)F2(c,0)F1(-c,0)F2(c,0)关于关于x轴、轴、y轴、原点对称轴、原点对称A1(-a,0),),A2(a,0)渐进线渐进线无无例例1:求双曲线求双曲线的
3、实半轴长的实半轴长,虚半轴长虚半轴长,焦点坐标焦点坐标,离心率离心率.渐近线方程。渐近线方程。解:把方程化为标准方程解:把方程化为标准方程可得可得:实半轴长实半轴长a=4虚半轴长虚半轴长b=3半焦距半焦距c=焦点坐标是焦点坐标是(0,-5),(0,5)离心率离心率:渐近线方程渐近线方程:14416922=-xy1342222=-xy53422=+45=ace题型一题型一 双曲线的几何性质双曲线的几何性质1、求双曲线、求双曲线 的顶点坐标、焦点的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程。坐标、实轴长、虚轴长、离心率和渐近线方程。课堂练习课堂练习 例例2:题型二利用双曲线的几何性质求
4、其标准方程题型二利用双曲线的几何性质求其标准方程2、例、例2中去掉条件中去掉条件“焦点在焦点在x轴上轴上”解该题。解该题。课堂练习课堂练习法二:法二:设双曲线方程为设双曲线方程为 双曲线方程为双曲线方程为 ,解之得解之得k=4,课堂练习:课堂练习:4、求以椭圆、求以椭圆 的焦点为顶点,以椭圆的的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程。顶点为焦点的双曲线的方程。2、若双曲线的渐近线方程为若双曲线的渐近线方程为 则双曲线的则双曲线的离心率为离心率为 。2、若双曲线的离心率为、若双曲线的离心率为2,则两条渐近线的夹角,则两条渐近线的夹角为为 。课堂练习课堂练习例例3:求下列双曲线的标准方程:求
5、下列双曲线的标准方程:例题讲解例题讲解(2)求与求与椭圆椭圆 有共同焦点,有共同焦点,渐渐近近线线方程方程为为的双曲的双曲线线方程。方程。法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,(2)求与求与椭圆椭圆 有共同焦点,有共同焦点,渐渐近近线线方程方程为为的双曲的双曲线线方程。方程。解:解:椭圆椭圆的焦点在的焦点在x轴轴上,且坐上,且坐标为标为 双曲双曲线线的的渐渐近近线线方程方程为为 解出解出 2.2.求中心在原点,对称轴为坐标轴,经过点求中心在原点,对称轴为坐标轴,经过点P(1,(1,3)3)且离心率为且离心率为 的双曲线标准方程的双曲线标准方
6、程.1 1.过点(过点(1,2),且渐近线为),且渐近线为的双曲的双曲线线方程是方程是_.2.3.22.3.2 双曲线简单的几何性质双曲线简单的几何性质 (二二)关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率yxOA2B2A1B1.F1F2yB2A1A2 B1 xO.F2F1A1(-a,0),),A2(a,0)B1(0,-b),),B2(0,b)F1(-c,0)F2(c,0)F1(-c,0)F2(c,0)关于关于x轴、轴、y轴、原点对称轴、原点对称A1(-a,0),),A2(a,0)渐进线渐进线无无关于关于x轴、轴、y轴、原点对称轴、原点对
7、称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率A1(-a,0),),A2(a,0)A1(0,-a),),A2(0,a)关于关于x轴、轴、y轴、原点对称轴、原点对称渐进线渐进线.yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)1、“共渐近线共渐近线”的双曲线的双曲线0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;0表示焦点在表示焦点在y轴上的双曲线。轴上的双曲线。2、“共焦点共焦点”的双曲线的双曲线(1)与椭圆)与椭圆 有共同焦点的双曲线方程表有共同焦点的双曲线方程表 示为示为(2)与双曲线)与双曲线
8、 有共同焦点的双曲线方有共同焦点的双曲线方程表示为程表示为复习练习:复习练习:2.求与求与椭圆椭圆有共同焦点,有共同焦点,渐渐近近线线方程方程为为的双曲的双曲线线方程。方程。3、求以椭圆、求以椭圆 的焦点为顶点,以椭圆的的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程。顶点为焦点的双曲线的方程。例例1、双曲线型自然通风塔的外形,是双曲线、双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的的一部分绕其虚轴旋转所成的曲面,它的最小半径为最小半径为12m,上口半径为上口半径为13m,下口半径下口半径为为25m,高高55m.选择适当的坐标系,求出此选择适当的坐标系,求出此双曲线的方程
9、双曲线的方程(精确到精确到1m).AA0 xCCBBy131225例题讲解例题讲解 例例2 2、点、点M M(x,yx,y)与定点)与定点F F(5,05,0),的距离),的距离和它到定直线:和它到定直线:的距离的比是常的距离的比是常数数 ,求点求点M M的轨迹的轨迹.y0d椭圆与直线的位置关系及判断方法椭圆与直线的位置关系及判断方法判断方法判断方法0(1)联立方程组)联立方程组(2)消去一个未知数)消去一个未知数(3)复习:相离相切相交二、直线与双曲线的位置关系二、直线与双曲线的位置关系1)位置关系种类位置关系种类XYO种类种类:相离相离;相切相切;相交相交(0个交点,一个交点,个交点,一个
10、交点,一个交点或两个交点一个交点或两个交点)2)2)位置关系与交点个数位置关系与交点个数XYOXYO相离相离:0:0个交点个交点相交相交:一个交点一个交点相交相交:两个交点两个交点相切相切:一个交点一个交点3)判断直线与双曲线位置关系的操作程序判断直线与双曲线位置关系的操作程序把直线方程代入双曲线方程把直线方程代入双曲线方程得到一元一次方程得到一元一次方程得到一元二次方程得到一元二次方程直线与双曲线的直线与双曲线的渐进线平行渐进线平行相交(一个交点)相交(一个交点)计计 算算 判判 别别 式式0=00 直线与双曲线相交(两个交点)直线与双曲线相交(两个交点)=0 直线与双曲线相切直线与双曲线相
11、切 0 直线与双曲线相离直线与双曲线相离相切一点相切一点:=0相相 离离:0 注注:相交两点相交两点:0 同侧:同侧:0 异侧异侧:0 一点一点:直线与渐进线平行直线与渐进线平行特别注意直线与双曲线的特别注意直线与双曲线的位置关系中:位置关系中:一解不一定相切,相交不一定一解不一定相切,相交不一定两解,两解不一定同支两解,两解不一定同支例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取值的取值范围范围,使直线与双曲线使直线与双曲线(1)没有公共点没有公共点;(2)有两个公共点有两个公共点;(3)只有一个公共点只有一个公共点;(4)交于异支两点;交于异支两点;(5)与左支交于两点与左支交于两点.(3)k=1,或,或k=;(4)-1k1;(1)k 或k ;(2)k ;1.过点过点P(1,1)与双曲线与双曲线 只有只有共有共有_条条.变题变题:将点将点P(1,1)改为改为1.A(3,4)2.B(3,0)3.C(4,0)4.D(0,0).答案又是怎样的答案又是怎样的?41.两条两条;2.三条三条;3.两条两条;4.零条零条.交点的交点的一个一个直线直线XYO(1,1)。
限制150内