数据结构第六章树和二叉树.ppt
《数据结构第六章树和二叉树.ppt》由会员分享,可在线阅读,更多相关《数据结构第六章树和二叉树.ppt(123页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6.1 树的类型定义树的类型定义6.2 6.2 二叉树的类型定义二叉树的类型定义6.3 二叉树的存储结构二叉树的存储结构6.4 二叉树的遍历二叉树的遍历6.5 线索二叉树线索二叉树6.6 树和森林的表示方法树和森林的表示方法6.7 树和森林的遍历树和森林的遍历6.8 哈夫曼树与哈夫曼编码哈夫曼树与哈夫曼编码6.1 树的类型定义树的类型定义数据对象数据对象 D:D是具有相同特性的数据元素的集合。是具有相同特性的数据元素的集合。若若D为空集,则称为空树;为空集,则称为空树;否则否则:(1)在在D中存在唯一的称为根的数据元素中存在唯一的称为根的数据元素root,(2)当当n1时,其余结点可分为时,其
2、余结点可分为m(m0)个互个互 不相交的有限集不相交的有限集T1,T2,Tm,其中每一其中每一 棵子集本身又是一棵符合本定义的树,棵子集本身又是一棵符合本定义的树,称为根称为根root的子树。的子树。数据关系数据关系 R:ABCDEFGHIJMKL例如例如:基基 本本 术术 语语结点结点:结点的度结点的度:树的度树的度:叶子结点叶子结点:分支结点分支结点:数据元素+若干指向子树的分支分支的个数树中所有结点的度的最大值度为零的结点度大于零的结点DHIJM(从根到结点的)路径:路径:孩子孩子结点、双亲双亲结点、兄弟兄弟结点、堂兄弟祖先祖先结点、子孙子孙结点结点的层次结点的层次:树的深度:树的深度:
3、由从根根到该结点所经分支和结点构成ABCDEFGHIJMKL假设根结点的层次为1,第l 层的结点的子树根结点的层次为l+1树中叶子结点所在的最大层次任何一棵非空树是一个二元组 Tree=(root,F)其中:其中:root 被称为根结点,F 被称为子树森林森林:森林:是 m(m0)棵互不相交的树的集合ArootBEFKLCGDHIJMF()有确定的根;()树根和子树根之间为有向关系。有向树:有向树:有序树:有序树:子树之间存在确定的次序关系。无序树:无序树:子树之间不存在确定的次序关系。对比对比树型结构树型结构和和线性结构线性结构的结构特点的结构特点线性结构线性结构树型结构树型结构第一个数据元
4、素第一个数据元素 (无前驱无前驱)根结点根结点 (无前驱无前驱)最后一个数据元素最后一个数据元素 (无后继无后继)多个叶子结点多个叶子结点 (无后继无后继)其它数据元素其它数据元素(一个前驱、一个前驱、一个后继一个后继)其它数据元素其它数据元素(一个前驱、一个前驱、多个后继多个后继)6.2 二叉树的类型定义二叉树的类型定义 二叉树或为空树空树;或是由一个根结根结点点加上两棵两棵分别称为左子树左子树和右子树的、互不交的互不交的二叉树二叉树组成。ABCDEFGHK根结点左子树右子树EF二叉树的五种基本形态:二叉树的五种基本形态:N空树空树只含根结点只含根结点NNNLRR右子树为空树右子树为空树L左
5、子树为空树左子树为空树左右子左右子树均不树均不为空树为空树二叉树二叉树的重要特性的重要特性 性质性质 1:在二叉树的第 i 层上至多有2i-1 个结点。(i1)用归纳法用归纳法证明证明:归纳基归纳基:归纳假设:归纳假设:归纳证明:归纳证明:i=1 层时,只有一个根结点,2i-1=20=1;假设对所有的 j,1 j i,命题成立;二叉树上每个结点至多有两棵子树,则第 i 层的结点数=2i-2 2=2i-1。性质性质 2:深度为 k 的二叉树上至多含 2k-1 个结点(k1)证明:证明:基于上一条性质,深度为 k 的二叉树上的结点数至多为 20+21+2k-1=2k-1 性质性质 3:对任何一棵二
6、叉树,若它含有n0 个叶子结点、n2 个度为 2 的结点,则必存在关系式:n0=n2+1证明:证明:设设 二叉树上结点总数 n=n0+n1+n2又又 二叉树上分支总数 b=n1+2n2而 b=n-1=n0+n1+n2-1由此,由此,n0=n2+1两类两类特殊特殊的二叉树:的二叉树:满二叉树满二叉树:指的是深度为k且含有2k-1个结点的二叉树。完全二叉树完全二叉树:树中所含的 n 个结点和满二叉树中编号编号为为 1 至至 n 的结点的结点一一对应。123456789 10 11 12 13 14 15abcdefghij 性质性质 4:具有 n 个结点的完全二叉树的深度深度为 log2n +1证
7、明:证明:设设 完全二叉树的深度为 k 则根据第二条性质得 2k-1 n 2k 即 k-1 log2 n n,则该结点无左孩子,否则,编号为 2i 的结点为其左孩子左孩子结点;(3)若 2i+1n,则该结点无右孩子结点,否则,编号为2i+1 的结点为其右孩子右孩子结点。6.3 二叉树的存储结构二叉树的存储结构二、二叉树的链式二、二叉树的链式 存储表示存储表示一、一、二叉树的顺序二叉树的顺序 存储表示存储表示#define MAX_TREE_SIZE 100 /二叉树的最大结点数typedef TElemType SqBiTreeMAX_TREE_SIZE;/0号单元存储根结点SqBiTree
8、bt;一、一、二叉树的顺序存储表示二叉树的顺序存储表示例如例如:A B D C E F 0 1 2 3 4 5 6 7 8 9 10 11 12 13ABCDEF1401326二、二叉树的链式存储表示二、二叉树的链式存储表示1.1.二叉链表二叉链表2三叉链表三叉链表3 3双亲链表双亲链表4线索链表线索链表ADEBCF rootlchild data rchild结点结构结点结构:1.1.二叉链表二叉链表typedef struct BiTNode /结点结构结点结构 TElemType data;struct BiTNode *lchild,*rchild;/左右孩子指针 BiTNode,*B
9、iTree;lchild data rchild结点结构结点结构:C 语言的类型描述如下语言的类型描述如下:rootADEBCF 2三叉链表三叉链表parent lchild data rchild结点结构结点结构:typedef struct TriTNode /结点结构结点结构 TElemType data;struct TriTNode *lchild,*rchild;/左右孩子指针 struct TriTNode *parent;/双亲指针 TriTNode,*TriTree;parent lchild data rchild结点结构结点结构:C 语言的类型描述如下语言的类型描述如下:
10、结点结构结点结构:3 3双亲链表双亲链表 data parentABDCEF0B41D42C03E14A-15F36LRTagLRRRRL根根 typedef struct BPTNode /结点结构结点结构 TElemType data;int *parent;/指向双亲的指针 char LRTag;/左、右孩子标志域 BPTNode typedef struct BPTree/树结构树结构 BPTNode nodesMAX_TREE_SIZE;int num_node;/结点数目 int root;/根结点的位置 BPTree 二叉树的主要基本操作二叉树的主要基本操作:(1)Init(bt
11、)构造一棵空二叉树、(2)Create(x,lbt,rbt)生成一棵以x为根结点,以二叉树lbt和rbt为左子树和右子树的二叉树(3)InsertL(x,Parent)将值为x的结点插入到二叉树中结点Parent的左孩子位置。如果结点Parent原来有左孩子结点,则将结点Parent原来的左孩子结点作为结点x的左孩子结点。(4)InsertR(x,Parent)将值为x的结点插入到二叉树中结点Parent的右孩子位置。如果结点Parent原来有右孩子结点,则将结点Parent原来的右孩子结点作为结点x的右孩子结点。(5)DeleteL(bt,Parent)在二叉树bt中删除结点Parent的左
12、子树(6)DeleteR(bt,Parent)在二叉树bt中删除结点Parent的右子树(7)Search(bt,x)在二叉树bt中查找数据元素x(8)Traverse(bt)按某种方式遍历二叉树 实现算法(1)Init(bt)int Init(BiTree bt)if(bt=(BiTree)malloc(sizeof(BiTNode)=NULL)return 0;bt-Lchild=NULL;bt-rchild=NULL;return 1;(2)Create(x,lbt,rbt)BiTree Create(x,lbt,rbt)BiTree p;if(bt=(BiTree)malloc(siz
13、eof(BiTNode)=NULL)return NULL;p-data=x;p-lchild=lbt;p-rchild=rbt;return p;(3)InsertL(x,Parent)BiTree InsertL(x,Parent)BiTree p;if(Parent=NULL)return NULL;if(bt=(BiTree)malloc(sizeof(BiTNode)=NULL)return NULL;p-data=x;p-lchild=NULL;p-rchild=NULL;if(Parent-lchild=NULL)Parent-lchild=p;else p-lchild=Par
14、ent-lchild;Parent-lchild=p;(5)DeleteL(bt,Parent)BiTree DeleteL(bt,Parent)BiTree p;if(Parent=NULL|Parent-lchild=NULL)return NULL;p=Parent-lchild;Parent-lchild=NULL;free(p);return bt;6.4二叉树的遍历二叉树的遍历一、问题的提出一、问题的提出二、先左后右的遍历算法二、先左后右的遍历算法三、算法的递归描述三、算法的递归描述四、中序遍历算法的非递归描述四、中序遍历算法的非递归描述四四、遍历算法的应用举例遍历算法的应用举例
15、顺着某一条搜索路径巡访巡访二叉树中的结点,使得每个结点均被访问一均被访问一次次,而且仅被访问一次仅被访问一次。一、问题的提出一、问题的提出“访问访问”的含义可以很广,如:输出结点的信息等。“遍历遍历”是任何类型均有的操作,对线性结构而言,只有一条搜索路径(因为每个结点均只有一个后继),故不需要另加讨论。而二叉树是非线性结构,每个结点有两个后继每个结点有两个后继,则存在如何遍历存在如何遍历即按什么样的搜索搜索路径路径进行进行遍历的问题。对对“二二叉叉树树”而而言言,可可以以有有三条搜索路径:三条搜索路径:1先上后下先上后下的按层次遍历;2先先左左(子树)后后右右(子树)的遍历;3先先右右(子树)
16、后后左左(子树)的遍历。二、先左后右的遍历算法二、先左后右的遍历算法先先(根)序的遍历算法中中(根)序的遍历算法后后(根)序的遍历算法根根左子树右子树根根根根根根根根根根 若二叉树为空树,则空操作;否则,(1)访问根结点;(2)先序遍历左子树;(3)先序遍历右子树。先(根)序的遍历算法:先(根)序的遍历算法:若二叉树为空树,则空操作;否则,(1)中序遍历左子树;(2)访问根结点;(3)中序遍历右子树。中(根)序的遍历算法:中(根)序的遍历算法:若二叉树为空树,则空操作;否则,(1)后序遍历左子树;(2)后序遍历右子树;(3)访问根结点。后(根)序的遍历算法:后(根)序的遍历算法:ABCDEFG
17、HK例如:例如:先序序列:先序序列:中序序列:中序序列:后序序列:后序序列:A B C D E F G H KB D C A E H G K FD C B H K G F E A三、算法的递归描述三、算法的递归描述void Preorder(BiTree T)/先序遍历二叉树 if(T)printf(“%d”,T-data);/访问结点 Preorder(T-lchild,visit);/遍历左子树 Preorder(T-rchild,visit);/遍历右子树 前序遍历算法的非递归描述前序遍历算法的非递归描述void preorder(BiTree bt)BiTree*stackMaxsiz
18、e,p;int top;if(bt!=NULL)top=1;stacktop=b;/根结点入栈 while(top0)/栈不为空时循环 p=stacktop-;/退栈并访问该结点 printf(“%d”,p-data);if(p-rchild!=NULL)/右孩子入栈 stacktop=p-rchild;top+;if(p-lchild!=NULL)/左孩子入栈 stacktop=p-lchild;top+;/while /if中序遍历算法的非递归描述中序遍历算法的非递归描述BiTNode*GoFarLeft(BiTree T,Stack*S)if(!T)return NULL;while(T
19、-lchild)Push(S,T);T=T-lchild;return T;void Inorder(BiTree T,void(*visit)(TelemType&e)Stack*S;t=GoFarLeft(T,S);/找到最左下的结点 while(t)visit(t-data);if(t-rchild)else if(!StackEmpty(S)t=Pop(S);/退栈 else t=NULL;/栈空表明遍历结束 /while t=GoFarLeft(t-rchild,S);四四、遍历算法的应用举例遍历算法的应用举例2、统计二叉树中叶子结点的个数、统计二叉树中叶子结点的个数3、求二叉树的深
20、度、求二叉树的深度(后序遍历后序遍历)4 4、建立二叉树的存储结构、建立二叉树的存储结构1、查询二叉树中某个结点、查询二叉树中某个结点1.在二叉树不空的前提下,和根结点的元素进行比较,若相等,则找到返回 TRUE;2.否则在左子树中进行查找,若找到,则返回 TRUE;3.否则继续在右子树中进行查找,若找到,则返回 TRUE,否则返回 FALSE;Status Preorder(BiTree T,ElemType x)/若二叉树中存在和若二叉树中存在和 x 相同的元素,则相同的元素,则 p p 指向该结点并返回指向该结点并返回 OK,/否则返回否则返回 FALSE if(T)if(T-data=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据结构 第六 二叉
限制150内