初三数学总复习学案(1)实数的概念.doc
《初三数学总复习学案(1)实数的概念.doc》由会员分享,可在线阅读,更多相关《初三数学总复习学案(1)实数的概念.doc(162页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初三数学总复习实数的概念一:【课前预习】(一):【知识梳理】1.实数的有关概念(1)有理数: 和 统称为有理数。 (2)有理数分类按定义分: 按符号分:有理数;有理数(3)相反数:只有 不同的两个数互为相反数。若a、b互为相反数,则 。(4)数轴:规定了 、 和 的直线叫做数轴。(5)倒数:乘积 的两个数互为倒数。若a(a0)的倒数为.则 。(6)绝对值:(7)无理数: 小数叫做无理数。(8)实数: 和 统称为实数。(9)实数和 的点一一对应。2.实数的分类:实数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成a10n的形式(其中1a10,n是整数)(2)近似数是指根据精确度取其
2、接近准确数的值。取近似数的原则是“四舍五入”。(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。(二):【课前练习】 1|22|的值是( ) A2 B.2 C4 D4 2下列说法不正确的是( ) A没有最大的有理数 B没有最小的有理数C有最大的负数 D有绝对值最小的有理数 3在这七个数中,无理数有( ) A1个;B2个;C3个;D4个 4下列命题中正确的是( ) A有限小数是有理数 B数轴上的点与有理数一一对应 C无限小数是无理数 D数轴上的点与实数一一对应 5近似数0.030万精确到 位,有 个有效数字,用科学记数法表示为 万 二:【经典考题
3、剖析】 1在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离: 2下列各数中:-1,0,1.,-,2,.有理数集合 ; 正数集合 ;整数集合 ; 自然数集合 ;分数集合 ; 无理数集合 ;绝对值最小的数的集合 ;3. 已知(x-2)2+|y-4|+=0,求xyz的值 4已知a与 b互为相反数,c、d互为倒数,m的绝对值是2求 的值 5. a、
4、b在数轴上的位置如图所示,且,化简三:【课后训练】 2、一个数的倒数的相反数是1,则这个数是() A B C- D3、一个数的绝对值等于这个数的相反数,这样的数是() A非负数B非正数C负数D正数4. 数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做( ) A代人法B换元法C数形结合D分类讨论5. 若a的相反数是最大的负整数,b是绝对值最小的数,则ab=_6.已知,则 7.光年是天文学中的距离单位,1光年大约是00km,用科学计数法表示 (保留三个有效数字)8.当a为何值时有:;9. 已知a与 b互为相反数,c、d互为倒数,x的绝对值是2的
5、相反数的负倒数,y不能作除数,求的值 10. (1)阅读下面材料:点 A、B在数轴上分别表示实数a,b,A、B两点之间的距离表示为|AB|,当A上两点 中有一点在原点时,不妨设点A在原点,如图124所示,|AB|=|BO|=|b|=|ab|;当A、B两点都不在原点时,如图125所示,点A、B都在原点的右边,|AB|=|BO|OA|=|b|a|=ba=|ab|; 如图126所示,点A、B都在原点的左边,|AB|=|BO|OA|=|b|a|=b(a)=|ab|;如图127所示,点A、B在原点的两边多边,|AB|=|BO|+|OA|=|b|+|a|=a+(b)=|ab|综上,数轴上 A、B两点之间的
6、距离|AB|=|ab|(2)回答下列问题: 数轴上表示2和5的两点之间的距离是_,数轴上表示2和5的两点之间的距离是_,数轴上表示1和3的两点之间的距离是_. 数轴上表示x和1的两点A和B之间的距离是_,如果 |AB|=2,那么x为_ 当代数式|x+1|+|x2|=2 取最小值时,相应的x 的取值范围是_.四:【课后小结】初三数学总复习实数的运算一:【课前预习】(一):【知识梳理】 1. 有理数加、减、乘、除、幂及其混合运算的运算法则(1)有理数加法法则: 同号两数相加,取_的符号,并把_ 绝对值不相等的异号两数相加,取_的符号,并用 _。互为相反数的两个数相加得_。 一个数同0相加,_。(2
7、)有理数减法法则:减去一个数,等于加上_。(3)有理数乘法法则: 两数相乘,同号_,异号_,并把_。任何数同0相乘,都得_。 几个不等于0的数相乘,积的符号由_决定。当_,积为负,当_,积为正。 几个数相乘,有一个因数为0,积就为_.(4)有理数除法法则: 除以一个数,等于_._不能作除数。 两数相除,同号_,异号_,并把_。 0除以任何一个_的数,都得0(5)幂的运算法则:正数的任何次幂都是_; 负数的_是负数,负数的_是正数(6)有理数混合运算法则: 先算_,再算_,最后算_。 如果有括号,就_。2.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 有括号时,先算 里面,再算括号外。
8、同级运算从左到右,按顺序进行。3.运算律(1)加法交换律:_。 (2)加法结合律:_。(3)乘法交换律:_。 (4)乘法结合律:_。(5)乘法分配律:_。4.实数的大小比较(1)差值比较法:0,=0,0 (2)商值比较法:若为两正数,则; (3)绝对值比较法: 若为两负数,则 (4)两数平方法:如5.三个重要的非负数:(二):【课前练习】 1. 下列说法中,正确的是( )A|m|与m互为相反数 B互为倒数C19988用科学计数法表示为19988102 D04949用四舍五入法保留两个有效数字的近似值为050 2. 在函数中,自变量x的取值范围是( )Ax1 Bx1 Cx1 Dx1 3. 按鍵顺
9、序124,结果是。 4.的平方根是_ 5.计算(1) 32(3)2+| |( 6)+;(2) 二:【经典考题剖析】1.已知x、y是实数, 2.请在下列6个实数中,计算有理数的和与无理数的积的差:3.比较大小:4.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;那么37的个位数字是 ;320的个位数字是 ;5.计算:(1);(2)三:【课后训练】1.某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个住宅区在同一条直线上,位置如图所示,该公司的接
10、送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小,那么停靠站的位置应设在( )AA区; BB区; CC区; DA、B两区之间 2.根据国家税务总局发布的信息,2004年全国税收收入完成25718亿元,比上年增长25.7%,占2004年国内生产总值(GDP)的19%。根据以上信息,下列说法:2003年全国税收收入约为25718(1-25.7%)亿元;2003年全国税收收入约为亿元;若按相同的增长率计算,预计2005年全国税收收入约为25718(1+25.7%)亿元;2004年国内生产总值(GDP)约为亿元。其中正确的有( )A;B;C;D 3.当时,的大小顺序是( )A;B;C
11、;D 4.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上自左至右的顺序是( )AC 、B 、A;BB 、C 、A ;CA、B、 C ;DC、 A、 B 5.现规定一种新的运算“”:ab=ab,如32=32=9,则( )A;B8;C;D 6.火车票上的车次号有两种意义。一是数字越小表示车速越快:198次为特快列车;101198次为直快列车;301398次为普快列车;401498次为普客列车。二是单、双数表示不同的行驶方向,比如单数表示从北京开出,则双数表示开往北京。根据以上规定,杭州开往北京的某一趟直快列车的车次号可能是( )A20;B119;C120;D319
12、 7.计算: (1)()2; (+)();(4);(5) 8. 已知:,求 9. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来 10.小王上周五买进某公司股票1000股,每股25元,在接下来的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌+2-0.5+1.5-1.8+0.8 根据表格回答问题(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费。若
13、小王在本周五以收盘价将传全部股票卖出,他的收益情况如何?四:【课后小结】初三数学总复习数的开方和二次根式一:【课前预习】(一):【知识梳理】 1.平方根与立方根 (1)如果x2=a,那么x叫做a的 。一个正数有 个平方根,它们互为 ; 零的平方根是 ; 没有平方根。 (2)如果x3=a,那么x叫做a的 。一个正数有一个 的立方根;一个负数有一个 的立方根;零的立方根是 ; 2.二次根式(1)(2)(3)(4)二次根式的性质 ; ; (5)二次根式的运算 加减法:先化为 ,在合并同类二次根式;乘法:应用公式;除法:应用公式二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。(二):【
14、课前练习】 1.填空题2. 判断题3. 如果那么x取值范围是() A、x 2 B. x 2 C. x 2 D. x24. 下列各式属于最简二次根式的是( ) A 5. 在二次根式:;是同类二次根式的是( ) A和 B和 C和 D和二:【经典考题剖析】1. 已知ABC的三边长分别为a、b、c, 且a、b、c满足a2 6a+9+,试判断ABC的形状2. x为何值时,下列各式在实数范围内有意义(1); (2); (3)3.找出下列二次根式中的最简二次根式: 4.判别下列二次根式中,哪些是同类二次根式: 5. 化简与计算 ; ;三:【课后训练】 1. 当x2时,下列等式一定成立的是( ) A、 B、C
15、、 D、 2. 如果那么x取值范围是() A、x 2 B. x 2 C. x 2 D. x2 3. 当a为实数时,则实数a在数轴上的对应点在( ) A原点的右侧 B原点的左侧C原点或原点的右侧 D原点或原点的左侧 4. 有下列说法:有理数和数轴上的点一对应;不带根号的数一定是有理数;负数没有立方根;是17的平方根,其中正确的有( ) A0个 B1个 C2个 D3个 5. 计算所得结果是_ 6. 当a0时,化简= 7.计算 (1)、; (2)、(3)、; (4)、8. 已知:,求3x+4y的值。9. 实数P在数轴上的位置如图所示:化简10. 阅读下面的文字后,回答问题:小明和小芳解答题目:“先化
16、简下式,再求值:a+其中a=9时”,得出了不同的答案,小明的解答:原式= a+= a+(1a)=1,小芳的解答:原式= a+(a1)=2a1=291=17_是错误的; 错误的解答错在未能正确运用二次根式的性质:_四:【课后小结】初三数学总复习代数式的初步知识代数式有理式无理式一:【课前预习】(一):【知识梳理】 1. 代数式的分类: 2. 代数式的有关概念 (1)代数式: 用 (加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式。单独的一个数或者一个字母也是代数式 (2)有理式: 和 统称有理式。 (3)无理式: 3.代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 复习 实数 概念
限制150内