《数字逻辑基础和逻辑门电路精品文稿.ppt》由会员分享,可在线阅读,更多相关《数字逻辑基础和逻辑门电路精品文稿.ppt(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数字逻辑基础和逻辑门电路第1页,本讲稿共48页理想运放工作在饱和区的特点:理想运放工作在饱和区的特点:理想运放工作在饱和区的特点:理想运放工作在饱和区的特点:1.1.输出只有两种可能输出只有两种可能输出只有两种可能输出只有两种可能+U Uo o (sat)(sat)或或或或 U Uo o(sat)(sat)当当当当 u u+u u 时,时,时,时,u uo o=+=+U Uo o (sat)(sat)u u+uuu 时,时,时,时,u uo o=+=+U Uo o (sat)(sat)u u+uu 时,时,时,时,u uo o=U Uo o (sat)(sat)即即即即 u ui iUUUR
2、R 时,时,时,时,u uo o=U Uo o (sat)(sat)可见,在可见,在 ui=UR 处输出电压处输出电压 uo 发生跃变。发生跃变。参考电压参考电压第3页,本讲稿共48页uo+URuiuiuo0URUOM+UOM(b)电压传输特性电压传输特性(a)信号输入方式信号输入方式uo+uiURuiuo0URUOM+UOM(b)电压传输特性电压传输特性(a)信号输入方式信号输入方式返返 回回上一节上一节下一节下一节上一页上一页下一页下一页第4页,本讲稿共48页零电压比较器零电压比较器零电压比较器零电压比较器利用电压比较器利用电压比较器利用电压比较器利用电压比较器将正弦波变为方波将正弦波变为
3、方波将正弦波变为方波将正弦波变为方波URuouiR2+R1+电压传输特性电压传输特性电压传输特性电压传输特性 U Uo o(sat)(sat)+U Uo o(sat)(sat)u ui iu uo oO OU UR R=0=0tuiO Otuo+Uo(sat)Uo(sat)O O第5页,本讲稿共48页uoURuiR2+R1+第6页,本讲稿共48页图1 所示为比较器电路,其传输特性为 图2 中()。第7页,本讲稿共48页电 路 如 图 所 示,若 输 入 电 压 ui=10 V,则 uO 约 等 于()。(a)50 V(b)-50 V(c)15 V(d)-15 V 第8页,本讲稿共48页第第第第
4、10101010章章章章 数字逻辑基础和逻辑门电路数字逻辑基础和逻辑门电路数字逻辑基础和逻辑门电路数字逻辑基础和逻辑门电路10.1 10.1 数制逻辑基础数制逻辑基础10.2 10.2 逻辑代数及基本运算规则逻辑代数及基本运算规则10.3 10.3 逻辑门电路逻辑门电路10.4 10.4 逻辑函数的表示和化简逻辑函数的表示和化简返回第 1 0章上页下页第9页,本讲稿共48页1.1.数制数制(1)十进制十进制 十进制采用十进制采用0,1,2,9十个数码,在计算十个数码,在计算时时“逢十进一逢十进一”。对一个对一个 n 位的十进制整数位的十进制整数 D,可以写成:,可以写成:同时又可以按位权展开写
5、成:同时又可以按位权展开写成:例如:例如:(379)10310271019100十进制就是以十进制就是以10为基数的计数体制。为基数的计数体制。10.1 数制逻辑基础数制逻辑基础 第10页,本讲稿共48页 计算机识别的是二进制,这种数只有计算机识别的是二进制,这种数只有0和和1两个数。两个数。计算时计算时“逢二进一逢二进一”,对于一个,对于一个n位的二进制整位的二进制整数数 D,可以写成:,可以写成:同时又可以按位权展开将其转换成十进制数同时又可以按位权展开将其转换成十进制数:例如:例如:(1101)2=123+122+021+120=(13)10(2)二进制二进制第11页,本讲稿共48页(3
6、)二进制与十进制之间的转换二进制与十进制之间的转换 二进制转换成十进制可以按照前面所说的按权二进制转换成十进制可以按照前面所说的按权展开即可。展开即可。十进制转换成二进制则采用连除的方法,如将十进制转换成二进制则采用连除的方法,如将(55)10转换成二进制。转换成二进制。0余数余数余数余数 二进制位二进制位二进制位二进制位1 d01 d11 d20 d31 d41 d5(55)10=(110111)2第12页,本讲稿共48页(4)十六进十六进 制转换为十进制制转换为十进制(5ABF)16=5163+10162+11 161+15 160 =54096+10256+11 16+15 1 =(23
7、231)10(1110111.0110101)2=(?)16 24=16 0111 0111 .0110 1010 7 7 6 A (1110111.0110101)2=(77.6A)16(5ABF)16=(?)10(5)二制转换为十六进制二制转换为十六进制第13页,本讲稿共48页.2.二二十进制编码十进制编码编码:编码:用若干二进制数码的组合表示各种数字、符号用若干二进制数码的组合表示各种数字、符号或某个信息的过程。或某个信息的过程。BCD编码(二编码(二十进制编码):十进制编码):用用4位二进制数码表示一位十进制数的过程。位二进制数码表示一位十进制数的过程。第14页,本讲稿共48页十进制十
8、进制 有有 权权 码码 无权码无权码(余(余3BCD码)码)8421BCD码码2421BCD码码0000000000011100010001010020010001001013001100110110401000100011150101010110006011001101001701110111101081000111010019100111111100第15页,本讲稿共48页(135.6875)10=(000100110101.0110100001110101)8421BCD(135.6875)10=(10000111.1011)2第16页,本讲稿共48页(255)10=()2 =()8 =
9、()16 =()8421BCD0010 0101 01010010 0101 0101100000000-1=11111111100000000-1=111111111111 1111=FF1111 1111=FF11 111 111=37711 111 111=377第17页,本讲稿共48页 1.1.逻辑代数运算规则逻辑代数运算规则 逻辑代数又称布尔代数,是分析与设计逻辑电路的逻辑代数又称布尔代数,是分析与设计逻辑电路的工具。逻辑代数表示的是逻辑关系,它的变量取值只有工具。逻辑代数表示的是逻辑关系,它的变量取值只有1 1和和0 0,表示两个相反的逻辑关系。,表示两个相反的逻辑关系。上页下页
10、基本运算有:基本运算有:乘(与)运算、加(或)运算、求乘(与)运算、加(或)运算、求反(非)运算。反(非)运算。返回10.2 10.2 逻辑代数及基本运算规则逻辑代数及基本运算规则第18页,本讲稿共48页1.基本逻辑运算基本逻辑运算与逻辑与逻辑+UFAB或逻辑或逻辑+UFA B非逻辑非逻辑+UFA第19页,本讲稿共48页1)与逻辑关系及运算)与逻辑关系及运算A、B 状态:合为状态:合为1,断为,断为0 ;F状态:亮为状态:亮为1,灭为,灭为0 A B F 0 0 0 0 1 0 1 0 0 1 1 1与逻辑关系状态表与逻辑关系状态表F=ABBFAFAB第20页,本讲稿共48页2)或逻辑关系及运
11、算)或逻辑关系及运算或逻辑关系状态表或逻辑关系状态表 A B F 0 0 0 0 1 1 1 0 1 1 1 1F=A+BBAF 1+UFA B第21页,本讲稿共48页AF1F=A+UFA3)非逻辑关系及运算)非逻辑关系及运算非逻辑关系状态表非逻辑关系状态表 A F 0 1 1 0第22页,本讲稿共48页10.3 逻辑门电路逻辑门电路 门电路(门电路(门电路(门电路(逻辑门电路)逻辑门电路)逻辑门电路)逻辑门电路)是用以实现输入、输出是用以实现输入、输出是用以实现输入、输出是用以实现输入、输出之间的逻辑关系。之间的逻辑关系。之间的逻辑关系。之间的逻辑关系。门电路主要有:与门、或门、非门、与非门
12、、或非门电路主要有:与门、或门、非门、与非门、或非门电路主要有:与门、或门、非门、与非门、或非门电路主要有:与门、或门、非门、与非门、或非门、异或门等。门、异或门等。门、异或门等。门、异或门等。10.3.1 门电路的概念门电路的概念门电路的概念门电路的概念第23页,本讲稿共48页 电平的高低电平的高低一般用一般用“1”和和“0”两种两种状态区别,若状态区别,若规定规定高电平为高电平为“1”,低电,低电平为平为“0”则则称为称为正逻辑正逻辑。反之则称为反之则称为负负逻辑逻辑。若无特。若无特殊说明,均采殊说明,均采用正逻辑。用正逻辑。100VUCC高电平高电平低电平低电平10.3.2.基本逻辑门电
13、路基本逻辑门电路 第24页,本讲稿共48页1、二极管二极管“与与”门电路门电路 1.1.电路电路电路电路2.2.工作原理工作原理工作原理工作原理输入输入A、B、C全为高电平全为高电平“1”,输出输出 Y 为为“1”。输入输入A、B、C不全为不全为“1”,输出输出 Y 为为“0”。0V0V0V0V0V3V+U 12VRDADCABYDBC3V3V3V0V00000010101011001000011001001111ABYC“与与与与”门逻辑状态表门逻辑状态表门逻辑状态表门逻辑状态表0V3V第25页,本讲稿共48页3.3.逻辑关系:逻辑关系:逻辑关系:逻辑关系:“与与与与”逻辑逻辑即:有即:有“
14、0”出出“0”,全全“1”出出“1”Y=A B C逻辑表达式:逻辑表达式:逻辑表达式:逻辑表达式:逻辑符号:逻辑符号:逻辑符号:逻辑符号:&ABYC00000010101011001000011001001111ABYC“与与与与”门逻辑状态表门逻辑状态表门逻辑状态表门逻辑状态表第26页,本讲稿共48页3.二极管二极管“或或”门电路门电路 1.1.电路电路电路电路0V0V0V0V0V3V3V3V3V0V00000011101111011001011101011111ABYC“或或或或”门逻辑状态表门逻辑状态表门逻辑状态表门逻辑状态表3V3V-U 12VRDADCABYDBC2.2.工作原理工作
15、原理工作原理工作原理输入输入A、B、C全为低电平全为低电平“0”,输出输出 Y 为为“0”。输入输入A、B、C有一个为有一个为“1”,输出输出 Y 为为“1”。第27页,本讲稿共48页3.逻辑关系逻辑关系:“或或或或”逻辑逻辑即:有即:有“1”出出“1”,全全“0”出出“0”Y=A+B+C逻辑表达式:逻辑表达式:逻辑表达式:逻辑表达式:逻辑符号:逻辑符号:逻辑符号:逻辑符号:ABYC 100000011101111011001011101011111ABYC“或或或或”门逻辑状态表门逻辑状态表门逻辑状态表门逻辑状态表第28页,本讲稿共48页4、三极管三极管“非非”门电路门电路+UCC-UBBA
16、RKRBRCYT 1 0截止截止截止截止饱和饱和逻辑表达式:逻辑表达式:Y=A“0”10“1”1.1.电路电路电路电路“0”“1”AY“非非非非”门逻辑状态表门逻辑状态表门逻辑状态表门逻辑状态表逻辑符号逻辑符号1AY第29页,本讲稿共48页1 1、“与非与非与非与非”门电路门电路门电路门电路有有“0”出出“1”,全,全“1”出出“0”“与与与与”门门门门&ABCY&ABC“与非与非与非与非”门门门门00010011101111011001011101011110ABYC“与非与非与非与非”门逻辑状态表门逻辑状态表门逻辑状态表门逻辑状态表Y=A B C逻辑表达式:逻辑表达式:逻辑表达式:逻辑表达
17、式:1Y“非非非非”门门门门10.3.4 复合门电路复合门电路第30页,本讲稿共48页2 2、“或非或非或非或非”门电路门电路门电路门电路有有“1”出出“0”,全,全“0”出出“1”1Y“非非非非”门门门门00010010101011001000011001001110ABYC“或非或非或非或非”门逻辑状态表门逻辑状态表门逻辑状态表门逻辑状态表“或或或或”门门门门ABC 1“或非或非或非或非”门门门门YABC 1Y=A+B+C逻辑表达式:逻辑表达式:逻辑表达式:逻辑表达式:第31页,本讲稿共48页“与与”门门ABFF=A B“与非与非”门门FABF=A B“或非或非”门门ABF11F=A+B“
18、或或”门门AB11FF=A+B“非非”门门1 1FAF=A名称图形符号逻辑表达式功能说明功能说明输入全输入全1 1,输出为,输出为1 1输入有输入有0 0,输出为,输出为0 0输入有输入有1 1,输出为,输出为1 1输入全输入全0 0,输出为,输出为0 0输入为输入为1 1,输出为,输出为0 0输入为输入为0 0,输出为,输出为1 1输入全输入全1 1,输出为,输出为0 0输入有输入有0 0,输出为,输出为1 1输入有输入有1 1,输出为,输出为0 0输入全输入全0 0,输出为,输出为1 1基本门电路总结基本门电路总结上页下页第10章返回第32页,本讲稿共48页10.3.3 10.3.3 集成
19、集成门电路门电路第10章上页下页返回第33页,本讲稿共48页三态输出三态输出“与非与非”门符号门符号逻辑关系:逻辑关系:EN=0时:时:F=AB EN=1时:时:F 高阻状态高阻状态上页下页第10章返回ABENFABFEN逻辑关系:逻辑关系:EN=1时:时:F=AB EN=0时:时:F 高阻状态高阻状态第34页,本讲稿共48页三态输出三态输出“与非与非”门符号门符号 逻辑关系:逻辑关系:EN=0时:时:F=AB EN=1时:时:F 高阻状态高阻状态三态门接于总线,可实现数据或信号的轮流传送三态门接于总线,可实现数据或信号的轮流传送上页下页第10章返回A1B1ENA3B3ENA2B2ENABEN
20、F011第35页,本讲稿共48页10.410.4 逻辑函数的表示和化简逻辑函数的表示和化简逻辑函数的表示和化简逻辑函数的表示和化简10.4.110.4.1 逻辑函数的表示方法逻辑函数的表示方法逻辑函数的表示方法逻辑函数的表示方法10.4.2 10.4.2 逻辑函数的化简法逻辑函数的化简法逻辑函数的化简法逻辑函数的化简法上页下页第10章返回第36页,本讲稿共48页第10章上页下页10.4.110.4.1 逻辑函数的表示方法逻辑函数的表示方法返回 逻辑式:逻辑式:用基本运算符号列出输入、输出变量间 的逻辑代数式 逻辑状态表逻辑状态表:列出输入、输出变量的所有逻辑状态 卡诺图:卡诺图:与变量的最小项
21、对应的按一定规则排列 的方格图 用逻辑符号表示输入、输出变量间的逻辑关系 逻辑图:逻辑图:第37页,本讲稿共48页上页下页返回第10章 设一个三输入变量的偶数判别电路,输入变量为A,B,C,输出变量为F。当输入变量中有偶数个1时,F=1;有奇数个1时,F=0。试用不同的逻辑函数表示法来表示。例例10.4.1输 入输 出A B CF 0 0 0 10 0 0 1 0 0 0 0 1 1 0 00 1 0 00 1 0 00 0 1 1 1 1 1 11 0 0 01 0 0 01 0 1 1 0 1 1 11 1 01 1 0 1 11 1 1 1 1 1 0 0 三个输入变量有8 个组合状态,
22、将这 8 个组合状态的输入,输出变量都列出来,就构成了逻辑状态表,如表所示。解:解:(1)逻辑状态表逻辑状态表第38页,本讲稿共48页上页下页返回第10章 把逻辑状态表中的输入,输出变量写成与或形式的逻辑表达式,将F=1的各状态表示成全部输入变量的与函数,并将总输出表示成这些与项的或函数,即逻辑表达式:F=A B C+A B C+A B C+A B C输 入输 出A B CF 0 0 0 10 0 0 1 0 0 1 0 0 1 0 00 1 0 0 1 0 0 00 1 1 0 1 1 1 11 0 0 1 0 0 0 01 0 1 1 0 1 1 11 1 1 1 1 1 1 11 1 1
23、 1 1 1 0 0(2)逻辑表达式逻辑表达式第39页,本讲稿共48页上页下页返回第10章 若将逻辑表达式中的逻辑运算关系用相应的图形符号和连线表示,则构成逻辑图。若将逻辑状态表按一定规则行列式化则构成下图所示。ABC0 01 10101111110100000 1 1 0 0 1 0 1 1 0(3)逻辑图逻辑图(4)卡诺图卡诺图第40页,本讲稿共48页 逻辑函数的化简通常有以下两种方法:1.应用运算法则化简*2.应用卡诺图化简10.4.2 10.4.2 10.4.2 10.4.2 逻辑函数的化简法逻辑函数的化简法逻辑函数的化简法逻辑函数的化简法上页下页第10章返回第41页,本讲稿共48页(
24、1).(1).逻辑代数基本运算法则逻辑代数基本运算法则 上页下页返回 A 0=0,A 1=A,A A=A 逻辑乘逻辑乘 A+0=A ,A+1=1,A+A=A逻辑加逻辑加逻辑非逻辑非 A A=0 ,A+A=1 ,A=A1.1.应用运算法则化简应用运算法则化简第42页,本讲稿共48页(2).逻辑代数的基本定律逻辑代数的基本定律交换律:交换律:A+B=B+A ,A B=B A结合律:结合律:A+(B+C)=(A+B)+C A (B C)=(A B)C上页下页 A B=A+B,A+B=A B吸收定律:吸收定律:A+AB=A+B ,A+AB=A反演定理:反演定理:分配律:分配律:A(B+C)=A B+A
25、 C A+B C=(A+B)(A+C)返回第 10章第43页,本讲稿共48页A+AB=A+BA+AB=A(1+B)+AB=A+AB+AB=A+B(A+A)=A+B第44页,本讲稿共48页1.1.应用运算法则化简应用运算法则化简化简逻辑式子应用较多的公式:A+1=1 ,AA=0 A+A=1,A+A=A A A=A ,A=A A B=A+BA+B=A BA+AB=A上页下页第10章返回第45页,本讲稿共48页解解:Y=AB(1+C+D+E)=AB=(AB+A)+B=A+B利用利用A+1 1=1 1运算法则运算法则!解解:Y=AB+A B=AB+A+B利用利用AB=A+B 运算法则运算法则!利用利用A+AB=A 运算法则运算法则!上页下页第10章返回化简化简 Y=AB+ABC+AB(D+E)例题例题 化简化简Y=AB A B 例题例题 第46页,本讲稿共48页上页下页第10章例题例题 证明证明 AB+AC+BC=AB+AC解:解:AB+AC+BC=AB+AC+(A+A)BC =AB+AC+ABC+ABC=AB+ABC+AC+ABC=AB(1+C)+AC(1+B)=AB+AC返回第47页,本讲稿共48页作业作业:8.1310.3 10.4 10.5 10.12 第48页,本讲稿共48页
限制150内