《二次函数中考复习课件ppt.ppt》由会员分享,可在线阅读,更多相关《二次函数中考复习课件ppt.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去二次函数二次函数复习复习与与练习练习课课火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1、二次函数的定义、二次函数的定义定义:定义:y=axbxc(a、b、c 是常数,是常数,a 0)l条件:条件:a 0 最高次数为最高次数为2 代数式一定是整式代数式一定是整式1、y=-x,y=100-5x,y=3x-2x+5,其中是二次函数的有其中是二次函数的有_个。个。火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿
2、的衣服或裹上湿毛毯、湿被褥勇敢地冲出去2,函数,函数 当当m取何值时,取何值时,(1)它是二次函数?)它是二次函数?(2)它是反比例函数?)它是反比例函数?(1)若是二次函数,则)若是二次函数,则 且且当当 时,是二次函数。时,是二次函数。(2)若是反比例函数,则)若是反比例函数,则 且且当当 时,是反比例函数。时,是反比例函数。火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去2、二次函数的图象及性质、二次函数的图象及性质抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=axy=ax2 2+bx+
3、c+bx+c(a0)y=axy=ax2 2+bx+c+bx+c(a0,开口向上开口向上a0,开口向下开口向下在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而增大的增大而增大.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增大的增大而增大.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而减小的增大而减小.xy0 xy0火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去练习练习 1、二次函数、二次函数y=x2+2x+1写成顶点式为:写成顶点式为:_,对称轴为,对称轴
4、为_,顶点为,顶点为_12y=(x+2)2-112x=-2(-2,-1)2、已知二次函数、已知二次函数y=-x2+bx-5的图象的图象的顶点在的顶点在y轴上,则轴上,则b=_。120火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去2、已知抛物线顶点坐标(、已知抛物线顶点坐标(h,k),通常设),通常设抛物线解析式为抛物线解析式为_3、已知抛物线与、已知抛物线与x 轴的两个交点轴的两个交点(x1,0)、(x2,0),通常设解析式为通常设解析式为_1、已知抛物线上的三点,通常设解析式为、已知抛物线上的三点,通常设解析式为_y=ax2+bx
5、+c(a0)y=a(x-h)2+k(a0)y=a(x-x1)(x-x2)(a0)一般式一般式顶点式顶点式交点式或两根式交点式或两根式3、求抛物线的解析式、求抛物线的解析式火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1、根据下列条件,求二次函数的解析式。、根据下列条件,求二次函数的解析式。(1)、图象经过、图象经过(0,0),(1,-2),(2,3)三点;三点;(2)、图象的顶点、图象的顶点(2,3),且经过点且经过点(3,1);(3)、图象经过、图象经过(0,0),(12,0),且最高点,且最高点 的纵坐标是的纵坐标是3。火灾袭来
6、时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去4、a,b,c符号的确定符号的确定a a决定开口方向和决定开口方向和大小大小:a a时开口向上,时开口向上,a a时开口向下时开口向下a a、b b同时决定对称轴位置:同时决定对称轴位置:a a、b b同号同号时时对称轴在对称轴在y y轴轴左侧左侧a a、b b异号异号时时对称轴在对称轴在y y轴轴右侧右侧b b时时对称轴是对称轴是y y轴轴c c决定抛物线与决定抛物线与y y轴的交点:轴的交点:c c时抛物线交于时抛物线交于y y轴的正半轴轴的正半轴c c时抛物线时抛物线过原点过原点c c时抛
7、物线交于时抛物线交于y y轴的负半轴轴的负半轴决定抛物线与决定抛物线与x x轴的交点轴的交点:时时抛物线与抛物线与x x轴有两个交点轴有两个交点时时抛物线与抛物线与x x轴有一个交点轴有一个交点 时时抛物线与抛物线与x x轴没有交点轴没有交点(上正、下负)上正、下负)(左同、右异左同、右异)(上正、下负上正、下负)=b b2 2-4ac-4ac 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去-2二次函数二次函数y=axy=ax2 2+bx+c(a+bx+c(a0)0)的几个的几个特例:特例:1 1)、当)、当x=1 x=1 时,时,
8、2 2)、当)、当x=-1x=-1时,时,3 3)、当)、当x=2x=2时,时,4 4)、当)、当x=-2x=-2时,时,y=y=y=y=6)、2a+b 0.xyo 1-12=5)、b-4ac 0.a+b+ca-b+c4a+2b+c4a-2b+c火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去xy、二次函数、二次函数y=axy=ax2 2+bx+c(a+bx+c(a0)0)的图象如图的图象如图 所示,则所示,则a a、b b、c c的符号为()的符号为()A A、a0,c0 Ba0,c0 B、a0,c0a0,c0 C C、a0,b0
9、Da0,b0 D、a0,b0,c0a0,b0,c0,b0,c=0 Ba0,b0,c=0 B、a0,c=0a0,c=0 C C、a0,b0,c0 Da0,b0,c0,b0,b0,b=0,c0,a0,b=0,c0,0 B0 B、a0,c0,a0,c0,b=0,c0,b=0,c0 D0 D、a0,b=0,c0,a0,b=0,c0,0 11;(;(3 3)2 2a ab b00;(;(4)4)a a+b b+c c0 0=b2 4ac=0=b2 4ac 0若抛物线若抛物线y=ax2+bx+c与与x轴有交点轴有交点,则则=b2 4ac0火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸
10、湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 (1)(1)如果关于如果关于x x的一元二次方程的一元二次方程 x x2 2-2x+m-2x+m=0=0有两个有两个相等的实数根相等的实数根,则则m=m=,此时抛物线此时抛物线 y=xy=x2 2-2x+m2x+m与与x x轴有个交点轴有个交点.(2)(2)已知抛物线已知抛物线 y=xy=x2 2 8x+c 8x+c的顶点在的顶点在 x x轴上轴上,则则c=c=.1116 (3)(3)一元二次方程一元二次方程3x3x2 2+x-10=0+x-10=0的两个根是的两个根是x x1 1=-2,x=-2,x2 2=5/3,=5/3,那么二次函数那么二次函数y
11、=3xy=3x2 2+x-10+x-10与与x x轴的交点坐标是轴的交点坐标是.(-2、0)()(5/3、0)火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1.1.已知抛物线已知抛物线y=axy=ax2 2+bx+c+bx+c与抛物线与抛物线y=-xy=-x2 2-3x+7-3x+7的形的形状相同状相同,顶点在直线顶点在直线x=1x=1上上,且顶点到且顶点到x x轴的距离为轴的距离为5,5,请写出满足此条件的抛物线的解析式请写出满足此条件的抛物线的解析式.解解:抛物线抛物线y=axy=ax2 2+bx+c+bx+c与抛物线与抛物线y=-xy=-x2 2-3x+7-3x+7的形状相同的形状相同 a=1a=1或或-1-1 又又 顶点在直线顶点在直线x=1x=1上上,且顶点到且顶点到x x轴的距离为轴的距离为5,5,顶点为顶点为(1,5)(1,5)或或(1,-5)(1,-5)所以其解析式为所以其解析式为:(1)y=(x-1)(1)y=(x-1)2 2+5 (2)y=(x-1)+5 (2)y=(x-1)2 2-5-5 (3)y=-(x-1)(3)y=-(x-1)2 2+5 (4)y=-(x-1)+5 (4)y=-(x-1)2 2-5-5 展开成一般式即可展开成一般式即可.7、二次函数的综合运用、二次函数的综合运用
限制150内