计算学习理论精选文档.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《计算学习理论精选文档.ppt》由会员分享,可在线阅读,更多相关《计算学习理论精选文档.ppt(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、计算学习理论2003.12.181*本讲稿第一页,共五十四页概述本章从理论上刻画了若干类型的机器学习问题中的困难和若干类型的机器学习算法的能力这个理论要回答的问题是:在什么样的条件下成功的学习是可能的?在什么条件下某个特定的学习算法可保证成功运行?这里考虑两种框架:可能近似正确(PAC)确定了若干假设类别,判断它们能否从多项式数量的训练样例中学习得到定义了一个对假设空间复杂度的自然度量,由它可以界定归纳学习所需的训练样例数目出错界限框架考查了一个学习器在确定正确假设前可能产生的训练错误数量2003.12.182*本讲稿第二页,共五十四页简介机器学习理论的一些问题:是否可能独立于学习算法确定学习
2、问题中固有的难度?能否知道为保证成功的学习有多少训练样例是必要的或充足的?如果学习器被允许向施教者提出查询,而不是观察训练集的随机样本,会对所需样例数目有怎样的影响?能否刻画出学习器在学到目标函数前会有多少次出错?能否刻画出一类学习问题中固有的计算复杂度?2003.12.183*本讲稿第三页,共五十四页简介(2)对所有这些问题的一般回答还未知,但不完整的学习计算理论已经开始出现本章阐述了该理论中的一些关键结论,并提供了在特定问题下一些问题的答案主要讨论在只给定目标函数的训练样例和候选假设空间的条件下,对该未知目标函数的归纳学习问题主要要解决的问题是:需要多少训练样例才足以成功地学习到目标函数以
3、及学习器在达到目标前会出多少次错2003.12.184*本讲稿第四页,共五十四页简介(3)如果明确了学习问题的如下属性,那么有可能给出前面问题的定量的上下界学习器所考虑的假设空间的大小和复杂度目标概念须近似到怎样的精度学习器输出成功的假设的可能性训练样例提供给学习器的方式本章不会着重于单独的学习算法,而是在较宽广的学习算法类别中考虑问题:样本复杂度:学习器要收敛到成功假设,需要多少训练样例?计算复杂度:学习器要收敛到成功假设,需要多大的计算量?出错界限:在成功收敛到一个假设前,学习器对训练样例的错误分类有多少次?2003.12.185*本讲稿第五页,共五十四页简介(4)为了解决这些问题需要许多
4、特殊的条件设定,比如“成功”的学习器的设定学习器是否输出等于目标概念的假设只要求输出的假设与目标概念在多数时间内意见一致学习器通常输出这样的假设学习器如何获得训练样例由一个施教者给出由学习器自己实验获得按照某过程随机生成2003.12.186*本讲稿第六页,共五十四页简介(5)7.2节介绍可能近似正确(PAC)学习框架7.3节在PAC框架下,分析几种学习算法的样本复杂度和计算复杂度7.4节介绍了假设空间复杂度的一个重要度量标准,称为VC维,并且将PAC分析扩展到假设空间无限的情况7.5节介绍出错界限模型,并提供了前面章节中几个学习算法出错数量的界限,最后介绍了加权多数算法2003.12.187
5、*本讲稿第七页,共五十四页可能学习近似正确假设可能近似正确学习模型(PAC)指定PAC学习模型适用的问题在此模型下,学习不同类别的目标函数需要多少训练样例和多大的计算量本章的讨论将限制在学习布尔值概念,且训练数据是无噪声的(许多结论可扩展到更一般的情形)2003.12.188*本讲稿第八页,共五十四页问题框架X表示所有实例的集合,C代表学习器要学习的目标概念集合,C中每个目标概念c对应于X的某个子集或一个等效的布尔函数c:X0,1假定实例按照某概率分布D从X中随机产生学习器L在学习目标概念时考虑可能假设的集合H。在观察了一系列关于目标概念c的训练样例后,L必须从H中输出某假设h,它是对c的估计
6、我们通过h在从X中抽取的新实例上的性能来评估L是否成功。新实例与训练数据具有相同的概率分布我们要求L足够一般,以至可以从C中学到任何目标概念而不管训练样例的分布如何,因此,我们会对C中所有可能的目标概念和所有可能的实例分布D进行最差情况的分析2003.12.189*本讲稿第九页,共五十四页假设的错误率为了描述学习器输出的假设h对真实目标概念的逼近程度,首先要定义假设h对应于目标概念c和实例分布D的真实错误率h的真实错误率是应用h到将来按分布D抽取的实例时的期望的错误率定义:假设h的关于目标概念c和分布D的真实错误率为h误分类根据D随机抽取的实例的概率2003.12.1810*本讲稿第十页,共五
7、十四页假设的错误率(2)图7-1:h关于c的错误率是随机选取的实例落入h和c不一致的区间的概率真实错误率紧密地依赖于未知的概率分布D如果D是一个均匀的概率分布,那么图7-1中假设的错误率为h和c不一致的空间在全部实例空间中的比例如果D恰好把h和c不一致区间中的实例赋予了很高的概率,相同的h和c将造成更高的错误率h关于c的错误率不能直接由学习器观察到,L只能观察到在训练样例上h的性能训练错误率:指代训练样例中被h误分类的样例所占的比例问题:h的观察到的训练错误率对真实错误率产生不正确估计的可能性多大?2003.12.1811*本讲稿第十一页,共五十四页PAC可学习性我们的目标是刻画出这样的目标概
8、念,它们能够从合理数量的随机抽取训练样例中通过合理的计算量可靠地学习对可学习性的表述一种可能的选择:为了学习到使errorD(h)=0的假设h,所需的训练样例数这样的选择不可行:首先要求对X中每个可能的实例都提供训练样例;其次要求训练样例无误导性可能近似学习:首先只要求学习器输出错误率限定在某常数范围内的假设,其次要求对所有的随机抽取样例序列的失败的概率限定在某常数范围内只要求学习器可能学习到一个近似正确的假设2003.12.1812*本讲稿第十二页,共五十四页PAC可学习性(2)PAC可学习性的定义考虑定义在长度为n的实例集合X上的一概念类别C,学习器L使用假设空间H。当对所有cC,X上的分
9、布D,和满足0,=1个独立随机抽取的样例,那么对于任意0=1,变型空间VSH,D不是-详尽的概率小于或等于:证明:令h1,.,hk为H中关于c的真实错误率大于的所有假设。当且仅当k个假设中至少有一个恰好与所有m个独立随机抽取样例一致时,不能使变型空间-详尽化。任一假设真实错误率大于,且与一个随机抽取样例一致的可能性最多为1-,因此,该假设与m个独立抽取样例一致的概率最多为(1-)m由于已知有k个假设错误率大于,那么至少有一个与所有m个训练样例都不一致的概率最多为(当 ,则 )2003.12.1818*本讲稿第十八页,共五十四页有限假设空间的样本复杂度(5)定理7.1基于训练样例的数目m、允许的
10、错误率和H的大小,给出了变型空间不是-详尽的概率的上界即它对于使用假设空间H的任意学习器界定了m个训练样例未能将所有“坏”的假设(错误率大于的假设)剔除出去的概率利用上面的结论来确定为了减少此“未剔除”概率到一希望程度所需的训练样例数 由 解出m,得到2003.12.1819*本讲稿第十九页,共五十四页有限假设空间的样本复杂度(6)式子7.2提供了训练样例数目的一般边界,该数目的样例足以在所期望的值和程度下,使任何一致学习器成功地学习到H中的任意目标概念训练样例的数目m足以保证任意一致假设是可能(可能性为1-)近似(错误率为)正确的m随着1/线性增长,随着1/和假设空间的规模对数增长上面的界限
11、可能是过高的估计,主要来源于|H|项,它产生于证明过程中在所有可能假设上计算那些不可接受的假设的概率和在7.4节讨论一个更紧凑的边界以及能够覆盖无限大的假设空间的边界2003.12.1820*本讲稿第二十页,共五十四页不可知学习和不一致假设如果学习器不假定目标概念可在H中表示,而只简单地寻找具有最小训练错误率的假设,这样的学习器称为不可知学习器式7.2基于的假定是学习器输出一零错误率假设,在更一般的情形下学习器考虑到了有非零训练错误率的假设时,仍能找到一个简单的边界令S代表学习器可观察到的特定训练样例集合,errorS(h)表示h的训练错误率,即S中被h误分类的训练样例所占比例令hbest表示
12、H中有最小训练错误率的假设,问题是:多少训练样例才足以保证其真实错误率errorD(hbest)不会多于+errorS(hbest)?(上一节问题是这个问题的特例)2003.12.1821*本讲稿第二十一页,共五十四页不可知学习和不一致假设(2)前面问题的回答使用类似定理7.1的证明方法,这里有必要引入一般的Hoeffding边界Hoeffding边界刻画的是某事件的真实概率及其m个独立试验中观察到的频率之间的差异Hoeffding边界表明,当训练错误率errorS(h)在包含m个随机抽取样例的集合S上测量时,则上式给出了一个概率边界,说明任意选择的假设训练错误率不能代表真实情况,为保证L寻找
13、到的最佳的假设的错误率有以上的边界,我们必须考虑这|H|个假设中任一个有较大错误率的概率2003.12.1822*本讲稿第二十二页,共五十四页不可知学习和不一致假设(3)将上式左边概率称为,问多少个训练样例m才足以使维持在一定值内,求解得到式7.3是式7.2的一般化情形,适用于当最佳假设可能有非零训练错误率时,学习器仍能选择到最佳假设hH的情形。2003.12.1823*本讲稿第二十三页,共五十四页布尔文字的合取是PAC可学习的我们已经有了一个训练样例数目的边界,表示样本数目为多少时才足以可能近似学习到目标概念,现在用它来确定某些特定概念类别的样本复杂度和PAC可学习性考虑目标概念类C,它由布
14、尔文字的合取表示。布尔文字是任意的布尔变量,或它的否定。问题:C是可PAC学习的吗?若假设空间H定义为n个布尔文字的合取,则假设空间|H|的大小为3n,得到关于n布尔文字合取学习问题的样本复杂度2003.12.1824*本讲稿第二十四页,共五十四页布尔文字的合取是PAC可学习的(2)定理7.2:布尔合取式的PAC可学习性布尔文字合取的类C是用Find-S算法PAC可学习的证明:式7.4显示了该概念类的样本复杂度是n、1/和1/的多项式级,而且独立于size(c)。为增量地处理每个训练样例,Find-S算法要求的运算量根据n线性增长,并独立于1/、1/和size(c)。因此这一概念类别是Find
15、-S算法PAC可学习的。2003.12.1825*本讲稿第二十五页,共五十四页其他概念类别的PAC可学习性无偏学习器(无归纳偏置)考虑一无偏概念类C,它包含与X相关的所有可教授概念,X中的实例定义为n个布尔值特征,则有无偏的目标概念类在PAC模型下有指数级的样本复杂度2003.12.1826*本讲稿第二十六页,共五十四页其他概念类别的PAC可学习性(2)K项DNF和K-CNF概念某概念类有多项式级的样本复杂度,但不能够在多项式时间内被学习到概念类C为k项析取范式(k项DNF)的形式k项DNF:T1.Tk,其中每一个Ti为n个布尔属性和它们的否定的合取假定H=C,则|H|最多为3nk,代入式7.
16、2,得到因此,k项DNF的样本复杂度为1/、1/、n和k的多项式级但是计算复杂度不是多项式级,该问题是NP完全问题(等效于其他已知的不能在多项式时间内解决的问题)因此,虽然k项DNF有多项式级的样本复杂度,它对于使用H=C的学习器没有多项式级的计算复杂度2003.12.1827*本讲稿第二十七页,共五十四页其他概念类别的PAC可学习性(3)令人吃惊的是,虽然k项DNF不是PAC可学习的,但存在一个更大的概念类是PAC可学习的这个更大的概念类是K-CNF,它有每样例的多项式级时间复杂度,又有多项式级的样本复杂度K-CNF:任意长度的合取式T1.Tj,其中每个Ti为最多k个布尔变量的析取容易证明K
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算 学习理论 精选 文档
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内