第四章 圆与方程知识点总结及习题(答案).doc
《第四章 圆与方程知识点总结及习题(答案).doc》由会员分享,可在线阅读,更多相关《第四章 圆与方程知识点总结及习题(答案).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章 圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;点与圆的位置关系:当,点在圆外当=,点在圆上当,点在圆内(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:
2、(1)设直线,圆,圆心到l的距离为 ,则有;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,
3、连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点圆的方程基础自测1.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是 ( )A.a-2或aB.-a0C.-2a0D.-2a答案D2.(2009河南新郑模拟)圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a、bR)对称,则ab的取值范围是 ( )A.B.C.D.答案A3.过点A(1,-1),B(-1,1),且圆心在直线x+y
4、-2=0上的圆的方程是( )A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4答案C4.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为 ( )A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9 D.(x+2)2+(y-1)2=9答案C5.(2009宜昌模拟)直线y=ax+b通过第一、三、四象限,则圆(x+a)2+(y+b)2=r2 (r0)的圆心位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案B例1 已知圆C的半径为2,圆心在
5、x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为( )A.x2+y2-2x-3=0B.x2+y2+4x=0C.x2+y2+2x-3=0 D.x2+y2-4x=0答案D例2 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OPOQ(O为坐标原点),求该圆的圆心坐标及半径.解 方法一 将x=3-2y,代入方程x2+y2+x-6y+m=0,得5y2-20y+12+m=0.设P(x1,y1),Q(x2,y2),则y1、y2满足条件:y1+y2=4,y1y2=OPOQ,x1x2+y1y2=0.而x1=3-2y1,x2=3-2y2.x1x2=9-6(y1+y2)+
6、4y1y2.m=3,此时0,圆心坐标为,半径r=.方法二 如图所示,设弦PQ中点为M,O1MPQ,.O1M的方程为:y-3=2,即:y=2x+4.由方程组解得M的坐标为(-1,2).则以PQ为直径的圆可设为(x+1)2+(y-2)2=r2.OPOQ,点O在以PQ为直径的圆上.(0+1)2+(0-2)2=r2,即r2=5,MQ2=r2.在RtO1MQ中,O1Q2=O1M2+MQ2.(3-2)2+5=m=3.半径为,圆心为.方法三 设过P、Q的圆系方程为x2+y2+x-6y+m+(x+2y-3)=0.由OPOQ知,点O(0,0)在圆上.m-3=0,即m=3.圆的方程可化为x2+y2+x-6y+3+
7、x+2y-3=0即x2+(1+)x+y2+2(-3)y=0.圆心M,又圆在PQ上.-+2(3-)-3=0,=1,m=3.圆心为,半径为.例3 (12分)已知实数x、y满足方程x2+y2-4x+1=0.(1)求y-x的最大值和最小值;(2)求x2+y2的最大值和最小值.解 (1)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-2. 5分所以y-x的最大值为-2+,最小值为-2-. 6分(2)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值. 8分又圆心到原点的距离为=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四章 圆与方程知识点总结及习题答案 第四 方程 知识点 总结 习题 答案
限制150内