《何时获得最大利润》教案.doc
《《何时获得最大利润》教案.doc》由会员分享,可在线阅读,更多相关《《何时获得最大利润》教案.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、26 何时获得最大利润优质教案教材分析 从题目来看,“何时获得最大利润”似乎是商家才应该考虑的问题但是你知道吗?这正是我们研究的二次函数的范畴因为二次函数化为顶点式后,很容易求出最大或最小值而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释 在教学中,要对学生进行适时的引导,并采用小组讨论的方式掌握本节课的内容,从而发展学生的数学应用能力教学目标 (一)教学知识点 1经历探索T恤衫销售中最大利润等问题的过程,体会
2、二次函数是一类最优化问题的数学模型,并感受数学的应用价值 2能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力 (二)能力训练要求 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力 (三)情感与价值观要求 1体会数学与人类社会的密切联系,了解数学的价值增进对数学的理解和学好数学的信心 2认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用教学重点 1探索销售中最大利润问题 2能够分析和表示实际问题中变量之间的二
3、次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力教学难点 运用二次函数的知识解决实际问题教学方法 在教师的引导下自主学习法教具准备 投影片三张 第一张:(记作26 A) 第二张:(记作26 B) 第三张:(汜作26 C)教学过程 . 创设问题情境,引入新课 师前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数yx2开始,然后是yax2.yax2+c,最后是y=a(x-h)2,ya(x-h)2+k,yax2+bx+c,掌握了二次函数的三种表示方式怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系那么究竟有什么样的关系呢?我们本节课将研究有关问
4、题 讲授新课 一、有关利润问题 投影片:(26 A)某商店经营T恤衫,已知成批购进时单价是25元根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是135元时,销售量是500件,而单价每降低1元,就可以多售出200件请你帮助分析,销售单价是多少时,可以获利最多?没销售单价为x(x135)元,那么(1)销售量可以表示为 ;(2)销售额可以表示为 ;(3)所获利润可以表示为 ;(4)当销售单价是 元时,可以获得最大利润,最大利润是 师从题目的内容来看好像是商家应考虑的问题:有关利润问题不过,这也为我们以后就业做了准备,今天我们就不妨来做一回商家从问题来看就是求最值问题,而最值问题是二次
5、函数中的问题因此我们应该先分析题意列出函数关系式 获利就是指利润,总利润应为每件T恤衫的利润(售价一进价)乘以T恤衫的数量,设销售单价为x元,则降低了(135-x)元,每降低1元,可多售出200件,降低了(135-x)元,则可多售出200(135-x)件,因此共售出500+200(135-x)件,若所获利润用y(元)表示,则y(x-25)500+200(135-x) 经过分析之后,大家就可回答以上问题了. 生(1)销售量可以表示为500+200(135-x)=3200200x (2)销售额可以表示为x(3200-200x)=3200x-200x2 (3)所获利润可以表示为(3200x-200x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 何时获得最大利润 何时 获得 最大 利润 教案
限制150内