高等数学下册第八章基本概念优秀课件.ppt
《高等数学下册第八章基本概念优秀课件.ppt》由会员分享,可在线阅读,更多相关《高等数学下册第八章基本概念优秀课件.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学下册第八章基本概念第1页,本讲稿共33页 第八章 第一节第一节一、区域一、区域二、多元函数的概念二、多元函数的概念三、多元函数的极限三、多元函数的极限四、多元函数的连续性四、多元函数的连续性机动 目录 上页 下页 返回 结束 多元函数的基本概念多元函数的基本概念 第2页,本讲稿共33页一、一、区域区域1.邻域邻域点集称为点 P0 的 邻域邻域.例如例如,在平面上,(圆邻域)在空间中,(球邻域)说明:说明:若不需要强调邻域半径,也可写成点 P0 的去心邻域去心邻域记为机动 目录 上页 下页 返回 结束 第3页,本讲稿共33页在讨论实际问题中也常使用方邻域,平面上的方邻域为。因为方邻域与圆
2、邻域可以互相包含.机动 目录 上页 下页 返回 结束 第4页,本讲稿共33页2.区域区域(1)内点、外点、边界点设有点集 E 及一点 P:若存在点 P 的某邻域 U(P)E,若存在点 P 的某邻域 U(P)E=,若对点 P 的任一任一邻域 U(P)既含 E中的内点也含 E则称 P 为 E 的内点内点;则称 P 为 E 的外点外点;则称 P 为 E 的边界点边界点 .机动 目录 上页 下页 返回 结束 的外点,显然,E 的内点必属于 E,E 的外点必不属于 E,E 的边界点可能属于 E,也可能不属于 E.第5页,本讲稿共33页(2)聚点聚点若对任意给定的,点P 的去心机动 目录 上页 下页 返回
3、 结束 邻域内总有E 中的点,则称 P 是 E 的聚点聚点.聚点可以属于 E,也可以不属于 E(因为聚点可以为 所有聚点所成的点集成为 E 的导集导集.E 的边界点)第6页,本讲稿共33页D(3)开区域及闭区域 若点集 E 的点都是内点,则称 E 为开集;若点集 E E,则称 E 为闭集;若集 D 中任意两点都可用一完全属于 D 的折线相连,开区域连同它的边界一起称为闭区域.则称 D 是连通的;连通的开集称为开区域,简称区域;机动 目录 上页 下页 返回 结束。E 的边界点的全体称为 E 的边界,记作E;第7页,本讲稿共33页例如,例如,在平面上开区域闭区域机动 目录 上页 下页 返回 结束
4、第8页,本讲稿共33页 整个平面 点集 是开集,是最大的开域,也是最大的闭域;但非区域.机动 目录 上页 下页 返回 结束 o 对区域 D,若存在正数 K,使一切点 PD 与某定点 A 的距离 AP K,则称 D 为有界域有界域,界域界域.否则称为无无第9页,本讲稿共33页3.n 维空间维空间n 元有序数组的全体称为 n 维空间维空间,n 维空间中的每一个元素称为空间中的称为该点的第 k 个坐标坐标.记作即机动 目录 上页 下页 返回 结束 一个点点,当所有坐标称该元素为 中的零元,记作 O.第10页,本讲稿共33页的距离距离记作中点 a 的 邻域邻域为机动 目录 上页 下页 返回 结束 规定
5、为 与零元 O 的距离为第11页,本讲稿共33页二、多元函数的概念二、多元函数的概念 引例引例:圆柱体的体积 定量理想气体的压强 三角形面积的海伦公式机动 目录 上页 下页 返回 结束 第12页,本讲稿共33页定义定义1.设非空点集点集 D 称为函数的定义域定义域;数集称为函数的值域值域 .特别地,当 n=2 时,有二元函数当 n=3 时,有三元函数映射称为定义在 D 上的 n 元函数元函数,记作机动 目录 上页 下页 返回 结束 第13页,本讲稿共33页例如,二元函数定义域为圆域说明说明:二元函数 z=f(x,y),(x,y)D图形为中心在原点的上半球面.机动 目录 上页 下页 返回 结束
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 下册 第八 基本概念 优秀 课件
限制150内