《立体几何精品精.ppt》由会员分享,可在线阅读,更多相关《立体几何精品精.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一一.引入两个重要的空间向量引入两个重要的空间向量1.直线的方向向量 把直线上任意两点的向量或与它平行的向量都称为直线的方向向量直线的方向向量.如图1,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是zxyAB第1页,本讲稿共34页2.平面的法向量v如果表示向量n的有向线段所在的直线垂直于平面,称这个向量垂直于平面,记作n,这时向量n叫做平面平面的法向量的法向量.n第2页,本讲稿共34页v在空间直角坐标系中,如何求平面法向量的坐标呢?如图2,设a=(x1,y1,z1)、b=(x2,y2,z2)是平面内的两个不共线的非零向量,由直线与平面垂直的判定定
2、理知,若n a且n b,则n.换句话说,若na=0且nb=0,则n .abn第3页,本讲稿共34页求平面的法向量的坐标的步骤v第一步第一步(设设):设出平面法向量的坐标为n=(x,y,z).v第二步(列):根据na=0且nb=0可列出方程组v第三步(解):把z看作常数,用z表示x、y.v第四步(取):取z为任意一个正数(当然取得越特 殊越好),便得到平面法向量n的坐标.第4页,本讲稿共34页v例例1在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.A AABCDOA1B1C1D1zxy第5页,本讲稿共34页解:以A为原点建立空间直角坐标系O-xyz(如图
3、),设平面OA1D1的法向量的法向量为n=(x,y,z),则O(1,1,0),A1(0,0,2),D1(0,2,2)由 =(-1,-1,2),=(-1,1,2)得 ,解得 取z=1得平面OA1D1的法向量的坐标n=(2,0,1).第6页,本讲稿共34页二二.立体几何问题的类型及解法立体几何问题的类型及解法v1.判定直线、平面间的位置关系v(1)直线与直线的位置关系v 不重合的两条直线a,b的方向向量分别为a,b.若ab,即a=b,则ab.若a b,即ab=0,则ababab第7页,本讲稿共34页v例例2已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,C1CB=C1CD=BCD=,
4、求证:C C1 BDA1B1C1D1CBAD第8页,本讲稿共34页v证明:设 a,b,c,v依题意有|a|=|b|,v于是 a bv =c(a b)=ca cbv =|c|a|cos|c|b|cos=0v C C1 BD 第9页,本讲稿共34页v(2)直线与平面的位置关系v 直线L的方向向量为a,平面的法向量为n,且L .v若an,即a=n,则 L v若a n,即an=0,则a .nanaLL第10页,本讲稿共34页v例例3棱长都等于2的正三棱柱ABC-A1B1C1,vD,E分别是AC,CC1的中点,求证:v(I)A1E 平面DBC1;v(II)AB1 平面DBC1A1C1B1ACBEDzxy
5、第11页,本讲稿共34页v解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则vA(-1,0,0),B(0,0),E(1,0,1),A1(-1,0,2),B1(0,2),C1(1,0,2).v设平面DBC1的法向量为n=(x,y,z),则v 解之得 ,v取z=1得n=(-2,0,1)v(I)=-n,从而A1E 平面DBC1v(II),而 n=-2+0+2=0vAB1 平面DBC1第12页,本讲稿共34页v(3)平面与平面的位置关系v平面的法向量为n1,平面的法向量为n2v n1v n1 n2v n2v若n1n2,即n1=n2,则v若n1 n2,即n1 n2=0,则第13页,本
6、讲稿共34页v例例4正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点,求证:面AED面A1FDzxyABCDFEA1B1C1D1第14页,本讲稿共34页v 证明:以A为原点建立如图所示的的直角坐标系A-xyz,设正方体的棱长为2,则E(2,0,1),A1(0,0,2),F(1,2,0),D(0,2,0),v于是v设平面AED的法向量为n1=(x,y,z)得v 解之得 v取z=2得n1=(-1,0,2)v同理可得平面A1FD的法向量为n2=(2,0,1)v n1 n2=-2+0+2=0v 面AED面A1FD第15页,本讲稿共34页2.求空间中的角v(1)两异面直线的夹角v利用向
7、量法求两异面直线所成的夹角,不用再把这两条异面直线平移,求出两条异面直线的方向向量,则两方向向量的夹角与两直线的夹角相等或互补,我们仅取锐角或直角就行了.第16页,本讲稿共34页v例例5如图在正方体ABCD-A1B1C1D1中,M是AB的中点,则对角线DB1与CM所成角的余弦值为_.BC A MxzyB1C1D1A1CD第17页,本讲稿共34页v解:以A为原点建立如图所示的直角坐标系A-xyz,设正方体的棱长为2,则vM(1,0,0),C(2,2,0),B1(2,0,2),D(0,2,0),v于是,v cos=.第18页,本讲稿共34页v(2)直线与与平面所成的角v若n是平面的法向量,a是直线
8、L的方向向量,则L与所成的角=-或=-(下图).v n a avvv v于是,v因此n第19页,本讲稿共34页v例例6正三棱柱ABC-A1B1C1的底面边长为a,高为 ,求AC1与侧面ABB1A1所成的角zxyC1A1B1ACBO第20页,本讲稿共34页v解:建立如图示的直角坐标系,则vA(,0,0),B(0,0)A1(,0,).C(-,0,)v设面ABB1A1的法向量为n=(x,y,z)v由 得 v ,解得 ,v取y=,得n=(3,0)v而vv第21页,本讲稿共34页v(3)二面角v设n1、n2分别是二面角两个半平面、的法向量,由几何知识可知,二面角-L-的大小与法向量n1、n2夹角相等(选
9、取法向量竖坐标z同号时相等)或互补(选取法向量竖坐标z异号时互补),于是求二面角的大小可转化为求两个平面法向量的夹角,这样可避免了二面角的平面角的作图麻烦.n1n1n2n2第22页,本讲稿共34页v例例7在四棱锥S-ABCD中DAB=ABC=90,侧棱SA底面AC,SA=AB=BC=1,AD=2,求二面角A-SD-C的大小.BCzxyABCDS第23页,本讲稿共34页解:建立如图所示的空间直角坐标系O-xyz,则 B(1,0,0),C(1,1,0),D(0,2,0),S(0,0,1).v设平面SCD的法向量n1=(x,y,z),则由v 得v n1=(1,1,2).v而面SAD的法向量n2=(1
10、,0,0).v于是二面角A-SD-C的大小满足v v 二面角A-SD-C的大小为 .第24页,本讲稿共34页3.求解空间中的距离v(1)异面直线间的距离v两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.v如图,设两条异面直线a、b的公垂线的方向向量为n,这时分别在a、b上任取A、B两点,则向量在n上的正射影长就是两条异面直线a、b的距离.v v即两异面直线间的距离等于两异面直线上分别任取两点的向两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值模的比值.na
11、bAB第25页,本讲稿共34页v例例8在棱长为1的正方体ABCD-A1B1C1D1中,求异面直线AC1与BD间的距离.zxyABCDD1C1B1A1第26页,本讲稿共34页v解:建立如图所示的空间直角坐标系A-xyz,则 A(0,0,0),B(1,0,0),D(0,1,0),C1(1,1,1),设异面直线AC1与BD的公垂线的方向向量n=(x,y,z),则由 ,得v n=(-1,-1,2).v v ,v异面直线AC1与BD间的距离第27页,本讲稿共34页v(2)点到平面的距离vA为平面外一点(如图),n为平面的法向量,过A作平面的斜线AB及垂线AH.v v =v =.v于是,点到平面的距离等于
12、平面内外两点的向量和平点到平面的距离等于平面内外两点的向量和平面的法向量的数量积的绝对值与平面的法向量模的比面的法向量的数量积的绝对值与平面的法向量模的比值值.nABH第28页,本讲稿共34页v例例9 在直三棱柱ABC-A1B1C1中,AA1=,AC=BC=1,ACB=90,v求B1到面A1BC的距离.zxyCC1A1B1AB第29页,本讲稿共34页v解:以C为原点建立空间直角坐标系C-xyz,则 C(0,0,0),A1(1,0,),B(0,1,0),B1(0,1,).设面A1BC的法向量n=(x,y,z),由 得v n=(-,0,1).v v ,vv或 ,vv或 ,vv可见,选择平面内外两点
13、的向量时,与平面内的点选择无关.第30页,本讲稿共34页v会求了点到平面的距离,直线到平面、平面到平面间的距离都可转化为求点到平面的距离来求.v例例10四棱锥P-ABCD的底面ACBD是菱形,AB=4,ABC=60,侧棱PA底面AC且PA=4,E是PA的中点,求PC与平面PED间的距离.xzyPBEADCF第31页,本讲稿共34页解:以A为原点、AB为x轴、ACD中CD边上的高AF为y轴、AP为z轴建立空间直角坐标系,则Fv为CD的中点,于是vA(0,0,0),B(4,0,0),F(0,2 ,0),C(2,2 ,0),vD(-2,2 ,0),P(0,0,4),E(0,0,2).v设面BED的法向量n=(x,y,z),由v 得 v n=(1,2).vvn 2+6-8=0,故PC面BED,vPC到面BED的距离就是P到面BED的距离,vv.第32页,本讲稿共34页v空间向量理论引入立体几何中,通常涉及到夹角、平行、垂直、距离等问题,其方法是不必添加繁杂的辅助线,只要建立适当的空建立适当的空间直角坐直角坐标系,写出相关点的坐系,写出相关点的坐标,利用向,利用向量运算解决立体几何量运算解决立体几何问题。这样使问题坐标化、符号化、数量化,从而将推理问题完全转化为代数运算,降低了思维难度,这正是在立体几何中引进空间向量的独到之处。第33页,本讲稿共34页第34页,本讲稿共34页
限制150内