第18讲交通流理论精.ppt
《第18讲交通流理论精.ppt》由会员分享,可在线阅读,更多相关《第18讲交通流理论精.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第18讲交通流理论第1页,本讲稿共26页2第一节 概述为了描述交通流而采用的一些数学或物理的方法,它用分析的方法阐述交通现象及其机理,使我们更好地理解交通现象及其本质。最早采用的数学方法是概率论方法,分析交通量不大的交通流是可行的,但随着车辆的增多,交通事故、交通阻塞现象越来越严重,交通流中车辆的独立性越来越小,概率论方法逐渐难以适应,于是相继出现了跟驰理论、排队理论、流体动力学模拟理论等,这些理论在实际应用中解决了一些具体方面的问题,但还不是很完善,交通流理论还没有形成完整的体系,还有待于进一步发展。第2页,本讲稿共26页3在20世纪30年代才开始发展,概率论方法。1933年,Kinzer.
2、J.P泊松分布用于交通分析的可能性。1936年,Adams.W.F发表数值例题。1947年,Greenshields泊松分布用于交叉口分析。20世纪50年代,跟驰理论,交通波理论(流体动力学模拟)和车辆排队理论。1975年丹尼尔(DanieL lG)和马休(Marthow,J.H)出版了交通流理论一书。1983年,蒋璜翻译为中文。人交出版社出版。第3页,本讲稿共26页4 例如20世纪90年代,纽约市政府原拟修建通往新泽西的新隧道,交通科学家们利用交通流动力学知识,经过合理的建模和分析,调整了原有隧道的交通控制和管理系统,使交通流始终处于高流量的亚稳态,交通通行能力增加20,从而取消了修建新隧道
3、的计划,这是交通流动力学成功应用的一个范例。事实证明,解决“交通难”问题的根本出路在于发展交通科学技术及其基础理论(包括交通流动力学)。案例介绍第4页,本讲稿共26页5 我们在观测交通量或车辆的车头时距时,会发现在固定的计数时间间隔内,每个间隔内查到的车辆数是变化的,所观测到的连续车头时距也是不同的,这说明车辆的到达是有一定随即性的,为了描述这种随机性而采用的概率统计方法可分为两种:离散型和连续型。应用:(1)信号配时的研究中,利用离散分布来描述车辆到达的分布规律,可以预测一个周期内到达的车辆数;(2)在计算支路的通行能力中,利用可接受间隙理论,采用连续分布来描述车头时距的分布特性。第二节 交
4、通流特性参数的统计分布第5页,本讲稿共26页6一、离散型概率统计模型一、离散型概率统计模型 离散型模型描述一定时间间隔内到达车辆数的波动情况,或分析一定长度路段内存在车辆数的分布情况。常用的离散型分布模型有三种:第6页,本讲稿共26页7(一)、泊松分布(一)、泊松分布1、基本公式:k=0、1、2、3 式中:P(k)-在计数间隔t内到达k辆车的概率 -车辆的平均到达率(辆/s)t-计数间隔的时间长度(s)令:m=t,为计数间隔t内平均到达的车辆数 则:2、递推公式:P(0)=e-m,3、适用条件:车辆密度不大,车辆间相互影响小,没有外界干扰因素的车流,即车流是随机的。第7页,本讲稿共26页84、
5、判断条件:泊松分布的均值M和方差D均等于t。当观测数据的均值m与方差S2的比值明显不等于1时,就是泊松分布不适合的表示,当近似等于1时,可用泊松分布。观测数据的均值m和方差S2为:m=第8页,本讲稿共26页9【例】【例】Adams数值例题对某一交叉口观测数据如下第9页,本讲稿共26页10解:t=10s,=111/(180*10)辆/m,m=t=0.617第10页,本讲稿共26页11【例】【例】设60辆车随机分布在4km长的路段上,服从泊松分布,求任意400m长的路段上有4辆及4辆以上汽车的概率。解:t=400 m,=60/4000 辆/m,m=t=6辆第11页,本讲稿共26页12【例】某信号灯
6、交叉口的周期C=97s,有效绿灯时间g=44s,在有效绿灯时间内排队的车流以s=900(辆/h)的交通量通过交叉口,在有效绿灯时间外到达的车辆要停车排队。设信号灯交叉口上游车辆的到达率q=369(辆/h),服从泊松分布,求到达车辆不至于两次排队的周期数占周期总数的最大百分率。第12页,本讲稿共26页13解:由于车流只能在有效绿灯时间通过,所以一个周期能通过的最大车辆数AVg44900/360011辆,如果某周期到达的车辆数N大于11辆,则最后到达的N11辆车要发生二次排队。泊松分布中一个周期内平均到达的车辆数:第13页,本讲稿共26页14(二)、二项分布(二)、二项分布 1、基本公式:P(k)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 18 通流 理论
限制150内