《231双曲线及其标准方程》教学设计.doc
《《231双曲线及其标准方程》教学设计.doc》由会员分享,可在线阅读,更多相关《《231双曲线及其标准方程》教学设计.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3.1双曲线及其标准方程教学设计袁敏敏:一等奖教学内容:本节内容为人教A版普通高中课程标准实验教科书选修2-1第2章第3节双曲线的第一课时。教材分析:圆锥曲线是解析几何中的一个重要内容。“双曲线及其标准方程”是在讲完了“圆的方程”、“椭圆及其标准方程”之后,学习又一类圆锥曲线知识,也是中学解析几何中学习的重要的内容之一,双曲线的定义和标准方程是本节的基本知识,所以必须掌握 而掌握好双曲线标准方程的推导过程又是理解和记忆标准方程的关键 应用双曲线的有关知识解决数学问题和实际应用问题是培养学生基本技能和基本能力的必要环节 坐标法是中学数学学习中必须掌握的一个重要方法,它充分体现了化归思想、数形
2、结合思想,是用以解决实际问题的一个重要的数学工具 本节仍是继续训练学生用坐标法解决方程与曲线有关问题的重要内容,对它的教学将帮助学生进一步熟悉和掌握求曲线方程的一般方法 犹如前面学习的圆和椭圆一样,双曲线也是一种动点的轨迹 双曲线和其方程分属于几何和代数这两个分立的体系,但是通过直角坐标系人们又将它们很好地结合在一起本节知识再次巩固这个知识。学情分析:学生先前已经学习了椭圆,基本掌握了椭圆的有关问题及研究方法,而双曲线问题,它与椭圆问题有类似性,类比椭圆可以很好地学习双曲线的知识,此外学生已经学习了求点的轨迹的方法与步骤;因此学习本课已具备一定的基础但在学习过程,较椭圆而言,从直观图形轨迹到抽
3、象概念的形成,中间一些细节问题的处理要求学生有更细致入微的分析和更强的领悟性,因此学生概括起来有更高的难度特别是对于为什么需要加绝对值,c与a的有怎么样大小关系,为什么是这样的等等。由于学生的运算能力较差,在推导双曲线的标准方程时,涉及到绝对值和根式,会遇到一定的困难。设计思想:本课为解析几何内容,充分体现了解析法的应用为了学生能很好的理解概念,在辅助媒体的选用上我选择了几何画板和powerpoint,1.借助于几何画板演示双曲线的形成,让学生观察分析动画过程中的特点,归纳总结定义。2.要学生动手运算推导双曲线的标准方程。3.利用课件,要学生观察分析叙述双曲线两种标准方程的共同点与不同点。通过
4、让学生动手演示,动口叙述,动脑编题等方式,充分调动学生的思维,形成以学生为主体的课堂氛围教学目标:知识与技能:了解双曲线的定义、几何图形和标准方程,能根据双曲线的定义推 导出双曲线的标准方程。过程与方法:通过对双曲线标准方程的推导,使学生进一步掌握求双曲线方程的 一般方法,并渗透数形结合及等价转化的思想方法,提高运用坐标 法解决几何问题的能力情感态度与价值观: 通过让学生探索双曲线标准方程,激发学习数学的积极性, 培养学生的观察能力、学习兴趣和创新意识。教学重点:双曲线的定义、标准方程及其简单应用教学难点:双曲线标准方程的推导。授课类型:新授课 课时安排:1课时 教 具:多媒体(几何画板、po
5、werpoint)教学过程: 一. 复习回顾问题1:椭圆的第一定义是什么?椭圆的标准方程是怎么样的?怎么推导而来?问题2:如何作椭圆? (过程:边回顾知识,边播放课件,动画展示椭圆的形成过程,注重于研究问题的方法。 设计意图:巩固椭圆知识,通过对旧知识的联想,类比得出新知识。) 二. 新课讲解(一)画板演示,感受双曲线形成在椭圆定义中,到两定点的距离之“和”改为到两定点的距离之“差”为定值,则曲线的轨迹又会如何?F1F2M(师生共同研究探索作图方案,主要解决如何来实现距离之差为定值)几何画板演示:画板画拉链,拉开一部分,在拉开的一边端点为F1,在另一边的中部位置为F2(注意F1F2的距离要比拉
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 231双曲线及其标准方程 231 双曲线 及其 标准 方程 教学 设计
限制150内