八年级数学动点问题专题训练.doc
《八年级数学动点问题专题训练.doc》由会员分享,可在线阅读,更多相关《八年级数学动点问题专题训练.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、动点问题专题训练1、(09包头)如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?AQCDBP解:(1)秒,厘米,厘米,点为的中点,厘米又厘米,厘米,又, ,又,则,点,点运动的时间秒,厘米/秒(2)设经过秒后点与点第
2、一次相遇,由题意,得,解得秒点共运动了厘米,点、点在边上相遇,经过秒点与点第一次在边上相遇 2、(09齐齐哈尔)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止点沿线段运动,速度为每秒1个单位长度,点沿路线运动(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标xAOQPBy解(1)A(8,0)B(0,6)(2)点由到的时间是(秒)点的速度是(单位/秒)当在线段上运动(或0)时, 当在线段上运动(或)时,,如图,作于点,由,得, (3)。4(09哈尔滨) 如图1,在平面
3、直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位秒的速度向终点C匀速运动,设PMB的面积为S(S0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,MPB与BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值ACBPQED图165(09河北)在RtABC中,C=90,AC = 3,AB = 5点P从点C出发沿CA以每秒1个单位长的
4、速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)ACBPQED图4(1)当t = 2时,AP = ,点Q到AC的距离是 ;(2)在点P从C向A运动的过程中,求APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值若不能,请说明理由;ACBPQED图5AC(E)BPQD图6G
5、AC(E)BPQD图7G(4)当DE经过点C时,请直接写出t的值 解:(1)1,; (2)作QFAC于点F,如图3, AQ = CP= t,由AQFABC, 得 ,即(3)能当DEQB时,如图4DEPQ,PQQB,四边形QBED是直角梯形此时AQP=90由APQABC,得,即 解得 如图5,当PQBC时,DEBC,四边形QBED是直角梯形此时APQ =90由AQPABC,得 ,即 解得(4)或点P由C向A运动,DE经过点C连接QC,作QGBC于点G,如图6,由,得,解得点P由A向C运动,DE经过点C,如图7,】6(09河南)如图,在中,点是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转
6、,交边于点过点作交直线于点,设直线的旋转角为(1)当 度时,四边形是等腰梯形,此时的长为 ;当 度时,四边形是直角梯形,此时的长为 ;(2)当时,判断四边形是否为菱形,并说明理由解(1)30,1;60,1.5; (2)当=900时,四边形EDBC是菱形.OECBDAlOCBA(备用图)=ACB=900,BC/EDCE/AB, 四边形EDBC是平行四边形.在RtABC中,ACB=900,B=600,BC=2,A=300.AB=4,AC=2.AO= . 在RtAOD中,A=300,AD=2.BD=2.BD=BC.又四边形EDBC是平行四边形,四边形EDBC是菱形 ADCBMN7(09济南)如图,在
7、梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(1)求的长(2)当时,求的值(3)试探究:为何值时,为等腰三角形解:(1)如图,过、分别作于,于,则四边形是矩形在中,在中,由勾股定理得,(图)ADCBKH(图)ADCBGMN(2)如图,过作交于点,则四边形是平行四边形 由题意知,当、运动到秒时,又,即解得, (3)分三种情况讨论:当时,如图,即ADCBMN(图)(图)ADCBMNHE当时,如图,过作于 解法一:由等腰三角形三线合一性质得 在中, 又在中, 解得 解法二:即当时,如图,过作于点.解法一:(方法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 学动点 问题 专题 训练
限制150内