《等比数列的定义通项公式及等比中项.doc》由会员分享,可在线阅读,更多相关《等比数列的定义通项公式及等比中项.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、汨罗市职业中专学校教学方案设计(首页)教学内容 等比数列的定义通项公式及等比中项课型理论课学时2节次13、14授课班级12机5班12数1授课日期出勤情况纪律情况教学目的知识与技能过程与方法情感态度价值观1、理解等比数列的定义;2、理解等比数列通项公式u 动脑思考 探索新知u 巩固知识 典型例题u 运用知识 强化练习u 理论升华 整体建构u 自我反思 目标检测u 继续探索 活动探究归纳法、举例法、讨论法、通过学习等比数列的通项公式,培养学生处理数据的能力,培养克服困难的精神。教学重点等比数列的通项公式教学难点等比数列通项公式的推导教学资源课本、PPT课件教学后记汨罗市职业中专学校教学方案设计(正
2、页)教 学 过 程教师行为学生行为教学意图时间*揭示课题63 等比数列*创设情境 兴趣导入【观察】某工厂今年的产值是1000万元,如果通过技术改造,在今后的5年内,每年的产值都比上一年增加10%,那么今年及以后5年的产值构成下面的一个数列(单位:万元): 不难发现,从第2项开始,数列中的各项都是其前一项的1.1倍,即从第2项开始,每一项与它的前一项的比都等于1.1介绍播放课件质疑引导分析了解观看课件思考自我分析从实例出发使学生自然的走向知识点05*动脑思考 探索新知【新知识】如果一个数列从第2项开始,每一项与它前一项的比都等于同一个常数,那么这个数列叫做等比数列这个常数叫做这个等比数列的公比,
3、一般用字母q来表示由定义知,若为等比数列,q为公比,则与q均不为零,且有,即 (6.5) 总结归纳仔细分析讲解关键词语思考理解记忆带领学生分析引导式启发学生得出结果10*巩固知识 典型例题例在等比数列中,求、解【试一试】你能很快地写出这个数列的第项吗?说明强调引领讲解说明观察思考主动求解通过例题进一步领会15*运用知识 强化练习 练习6.3.11在等比数列中, ,试写出、的第项与第6项 提问巡视指导动手求解及时了解学生知识掌握得情况25*创设情境 兴趣导入如何写出一个等比数列的通项公式呢?质疑引导分析思考参与分析学生自然的走向知识点30*动脑思考 探索新知与等差数列相类似,我们通过观察等比数列
4、各项之间的关系,分析、探求规律设等比数列的公比为q,则 【说明】 依此类推,得到等比数列的通项公式: (6.6)知道了等比数列中的和,利用公式(6.6),可以直接计算出数列的任意一项.【想一想】等比数列的通项公式中,共有四个量:、和,只要知道了其中的任意三个量,就可以求出另外的一个量. 针对不同情况,应该分别采用什么样的计算方法?总结归纳仔细分析讲解关键词语思考归纳理解记忆带领学生总结问题得到等差数列通项公式引导启发学生思考求解35*巩固知识 典型例题例2求等比数列 的第10项解 由于 ,故,数列的通项公式为 ,所以 例3 在等比数列中,求解 由有, (1), (2)(2)式的两边分别除以(1
5、)式的两边,得,由此得将代人(1),得,所以,数列的通项公式为 故【注意】 本例题求解过程中,通过两式相除求出公比的方法是研究等比数列问题的常用方法【想一想】在等比数列中, 求时,你有没有比较简单的方法?【知识巩固】例4 小明、小刚和小强进行钓鱼比赛,他们三人钓鱼的数量恰好组成一个等比数列已知他们三人一共钓了14条鱼,而每个人钓鱼数量的积为64 并且知道,小强钓的鱼最多,小明钓的鱼最少,问他们三人各钓了多少条鱼?分析 知道三个数构成等比数列,并且知道这三个数的积,可以将这三个数设为,这样可以方便地求出,从而解决问题.解 设小明、小刚和小强钓鱼的数量分别为则 解得 或当时 此时三个人钓鱼的条数分
6、别为2、4、8.当时 此时三个人钓鱼的条数分别为8、4、2.由于小明钓的鱼最少,小强钓的鱼最多,故小明钓了2条鱼,小刚钓了4条鱼,小强钓了8条鱼【注意】 将构成等比数列的三个数设为,是经常使用的方法说明强调引领讲解说明引领分析强调含义说明引领分析强调含义说明观察思考主动求解观察思考求解领会思考求解观察思考求解领会思考通过例题进一步领会注意观察学生是否理解知识点反复强调注意观察学生是否理解知识点反复强调4550*运用知识 强化练习 1.求等比数列.的通项公式与第7项2.在等比数列中,, 判断是否为数列中的项,如果是,请指出是第几项. 启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳6
7、0*理论升华 整体建构思考并回答下面的问题:等比数列的通项公式是什么结论:质疑归纳强调回答理解强化及时了解学生知识掌握情况70*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?引导回忆*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?已知等比数列中,求解答1 由已知条件得解方程组得 ,因此 解答2 由得所以提问巡视指导反思动手求解检验学生学习效果培养学生总结反思学习过程的能力80*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题63A组(必做);教材习题63B组(选做)(3)实践调查:用等比数列的通项公式解决生活中的一个问题说明记录分层次要求90【教师教学后记】项目反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克服;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;
限制150内