数学高考易错题大盘点(文科).doc
《数学高考易错题大盘点(文科).doc》由会员分享,可在线阅读,更多相关《数学高考易错题大盘点(文科).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学高考易错题大盘点(文科) 中国考试研究院 数学研究所对于文科考生来说,数学学科临场发挥的好坏,几乎决定高考的成败。综观近年高考阅卷,直面考生解题过程,正如名言“幸福的家庭都是一样的幸福,不幸的家庭各有各的不幸”所述,正确的解法通常表现为思维流畅、方法得当、知识清晰、书写规范,让阅者有“一气呵成”之感,而有问题的解法则往往显示出各种各样的缺漏,使人颇有“冤枉丢分”之憾;实践证实:尽量减少考试失误是高考数学致胜的法宝;本文旨在通过对考生失误情况的分析和诊断,力求把学生引向高考数学的至高点。症状一:审题性失误文科考生数学意识一般不太强,加上在考试过程中存在急于求成的心理,使得部分考生审题时出现失
2、误:或没有注意题目中关键的叙述,误解题意;或对题设信息挖掘不够,理解不透,从而得出错解,这是广大考生最难以接受、而又易犯的错误纠错良方:仔细读题,细嚼慢咽,重要字词,加强分析错因1 忽略条件信息例1已知集合A=k|方程表示的曲线是双曲线,B=x|y= ,则AB=( )A.(1,3) B.(3+) C.(-,-1(3,+) A=k|k3D.(-,-1)(1,+)错解1令 k0 k-30 令 B=x|x或x错解2前面同上,由A=k|k3,B=x|x或x A=错解3令k(k-3)0k3或k0的解集,即A=(-,0)(3,+),集合B=(-,-11,+), AB=(-,-1(3,+),故选C错因反思在
3、解答集合问题时,要注意描述法中的代表元素,而双曲线方程中分母的字母取值范围要摆脱标准方程形式上的束缚,回归概念,弄清字母取值的本真纠错良方:审题时抓住细节和关键点,重视限制条件,注意反思和检查错误档案:(1)(2007年安徽高考题)若集合 A=x,B=x,则A(CuB)中元素个数为( )A.0 B. 1 C. 2 D. 3解题时易忽略“x”这个已知条件,从而无选项。(2)(2007重庆高考题)设为公比q1的等比数列,若a2004和a2005是方程的二根,则a2006+a2007 = 解题时忽略“q1”的条件而误填:3或 错因2:遗忘隐含条件 例2(2006年陕西高考题)已知不等式(x+y)(+
4、)9对任意正实数x,y恒成立,求正实数a的最小值? 错解x+y 且+,(x+y)(+)4要使(x+y)(+)对任意正实数x、y恒成立,只要4,即a,故正实数a的最小值为 错因诊断以上解法因忽视等号成立而导致错误,这种错误比较隐蔽不易察觉,本题中,当a=时,固然有(x+y)(+)对任意x,y恒成立,但当且仅当x=y且=,即a=1且x=y时才成立,显然a=1与a=两者相矛盾,故(x+y)(+),4和a=中的等号都不能成立正解由(x+y)(+)=1+a+1+a+2=,由a4,当且仅当a=4 且x=y时,(x+y)(+)且9和a4中的等号都成立,故正实数a的最小值为4纠错反思正确运用题设,合理地将已知
5、条件实施等价转换,从而达到化难为易,化繁为简,化未知为已知之目的,要切实注意“等价转换”过程中的隐含条件纠错良方:要深入理会,充分挖掘隐含条件,有意识地重点关注:等式成立的条件、变量的取值范围、隐蔽的性质、常识性结论等错误档案:(1)若直线L:y=k(x-2)+2与圆c:有两个公共点,则实数k之取值范围为 解题时由于没有充分挖掘隐含条件“点(2,2)在圆C上”,以致把问题复杂而造成错解,事实上只需考虑直线L与圆C不相切即可(2)已知函数的定义域为(-),且,求关于x 不等式:之解集。解题时,由于没有注意到为偶函数,以及和均在(-)内,且=-x,从而得到(x)0(0x),于是得到(x)在(0,)
6、上递增,进而得到+-等性质,导致没能找到解题的切入点错因3:曲解题意本质例3已知电流I与时间t的函数关系为:I=Asin(wt+) 1、如右图是I=Asin(wt+)(|0),w150471,又w是整数,故w的最小正整数为472 错误诊断错将题意中“任意一段”理解为“存在一段”正解 依题意:周期T 即w300942,又w是整数,故w的最小正整数为943 错因反思见到熟悉题型切不可沾沾自喜,审题时粗枝大叶,没有深刻领会条件中的关键字眼就轻率落笔,容易掉进命题者设计的圈套中纠错良方:理解重点字词,抓住主干,去伪存真,真正领会条件的内涵,正确理解问题的本质,切不可粗心大意,误入审题陷阱错误档案:(1
7、)电路如图所示,从A到B共有 条不同的线路可通电(要求从A出发的三条支路有且只有一条通电)这道题常见错误是:运用加(乘)法原理得:22+1+3+8条,其实上面的支路通电有:(+)(+)=9条(即二条中至少有一条通电且另二条中至少有一条通电),下面的支路通电有:+=7(条)(即三条中至少有一条通电),故共有9+1+7=17(条)(2)(2007年浙江高考题)直线x-2y+1=0关于直线x=1对称的直线方程是( )A. x+2y-1=0 B. 2x+y-1=0C. 2x+y-3=0 D. x+2y-3=0 这道题常见错误是:将直线x-2y+1=0中的x换成-x,故选A;原来直线与直线x=1时的交点
8、为(1,1),所求直线经过点(1,1)且与已知直线垂直,故得直线:2x+y-3=0 选C症状二:知识性失误文科考生知识掌握不够熟练,借助死记硬背,往往只能停留在“课本知识”的表面,对基础知识不能灵活理解,相互沟通,缺乏综合运用知识的能力纠错良方:知识是能力的载体,基本知识和基本方法的综合运用就是能力,因此,要认真总结知识间的内在联系,强调知识的整合与综合,不断查找知识漏洞错因1 概念理解偏差例4某种菜籽在相同的条件下发芽试验结果如下表:种子粒数251070130310700150020003000发芽粒数24960116282639133918062715则一粒种子发芽的概率为 错解种子粒数较
9、大时,误差较小,故该菜籽发芽的概率为:P=错因诊断随机事件在一次试验中发生的频率=,它随着试验次数的改变而改变,在大量重复试验 中,随机事件的发生呈现一定的规律性,频率的值是稳定的,接近一个常数,这个常数就是随机事件发生的概率正解我们根据表格只能计算不同情况下的种子发芽的频率分别为:1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905,随着种子粒数的增加,菜籽发芽的频率越接近于0.9,且在它附近摆动,故此种子发芽的概率为0.9错因反思当试验次数越来越大时,频率趋向于概率,但不是概率,而随机事件的概率应该是接近于频率各个值的一个常数,不能曲解“概
10、率”概念的本质纠错良方:掌握概念内涵,弄懂概念外延,准确把握,透彻理解错误档案:(1)若函数处的导数为A,且: = A,则:之值为( )A.A B.2A C. A D. -2A错误原因是对导数概念理解不清,即:(a)=(2)(2006年全国高考题)若x=,则(3x+2)10的展开式中最大项是( )由n=10,可知系数最大项为第6项,即:T6=525=8064,以上解法错误地理解为求“二项式系数最大的项”,而问题是求展开式中数值最大的项,从而导致概念错误错因二:运用结论致错例5(2007年重庆高考题)定义域为R的函数在(8,+)上为单调递减,且函数y=为偶函数,则( ) B.C.D.错解根据y=
11、为偶函数,所以=,又令t=8+x, 代入=中得:=,所以函数是偶函数,再去选择答案时,发现不能确定对错错因诊断对偶函数的性质运用产生错误正解y=是偶函数,即y=关于直线x=8对称,又在(8,+)上为减函数,故在(-)上为增函数,检验知:选D纠错反思由为偶函数,则有=,而不是=,该题还可把y=向右平移8个单位得到y=图象,故y=的对称轴为X=8,从而得到的单调性纠错良方:产生因运用结论(定理、性质、公式、常用性结论)不当而致错的根本原因是:对相关结论成立的背景不熟,结论的变式理解不透,没能准确把握,似是而非,突破方法是:透彻理解,准确掌握,灵活运用,及时反思错误档案:(1)(2006年重庆高考题
12、)设函数=的图象与直线12x+y-1=0相切于点(1,-11),求a、b之值?错解为:由(x)= =-11(x)=037依题意知:错误原因是:误把切点当极值点得到(1)=0这个结论,而应该是(1)=-12,联立可得a=1 b=-3(2)(2007辽宁高考题)设等差数列an的前几项和为Sn,若S3=9,S6=36,则:a7+a8+a9=( )A.63 B.45 C.36 D.27错解为:S3,S6,S9成等差数列,又S6-S3=27 ,S9=63 错选A或D,事实上:S3,S6- S3,S9- S6才是等差数列,S9- S6=45 选B错因3:知识变通性差例6(2007年湖北卷文)已知函数=2s
13、in2()-cos2x,x,求的最大值和最小值?若不等式|2,在x,上恒成立?求实数m之取值范围? 错解(1)=1+2sin(2x-)且x, 2x- ,max=1+,min=2;(2)由|-m|2-2m+2,其中x,-2m+2 即0m3+ 错因诊断若-2m+2恒成立,则-2m+2 正解 -1m4,即m取值范围为(-1,4) 错因反思考生不能针对-2m0)的因素关于原点对称,则y=的解析式为( )A.=(x0)B. =(x0) D.=-log2( 0)得:=(x0)恒过点(1,0),所以y=f(x)恒过点(-1,0),所以选B错因诊断第一种解法没有真正理解对称的含义,不清楚利用图系变换去求函数表
14、达式的方法第二种解法主观臆断,以为只要恒过点(-1,0)的解析式即为所求正解:设y=f(x)上任一点p(x,y),由于p关于o对称的点p(-x,-y)在y=g(x)上,-y=log2()即y=-log2(- x)这里-x0,x0,故=-log2 ()(x0)为所求故选D纠错反思解题必须有根有据,由似曾相识的结论去武断行事,缺乏推理盲目地套用,往往导致全盘皆输,所以数学解题必须理由充分,不能妄下结论纠错良方转化与化归是处理新问题的基本思路,但不是盲目套用经验,既要看清新题与陈题的相似之处,更要弄准其不同的地方,切不可见到一点类似,就去直接套用老方法解,而应该从不同处去理性地探讨问题,确保有理有据
15、。错题档案(2007全国高考题)从5位同学中选派4位同学在星期五、星期六、星期六参加公益活动,每人一天,要求星期五有2人参加,星期六、星期天各有1人参加,则不同的选派方法有( )。A.40种 B.60种C.100种 D.120种错误解法有:从5个同学中选4人有种方法,从4个同学中选2人有种方法,共有参赛方案:=40种,选A。从5个同学中选4人有种选法。从4个同学中选2人有种选法,共有=30种,无答案显然,第一种解法只考虑学生参与情况,这是不合理的。第二种解法只选出2个学生周五,而另外2人未安排,故不合题意正确解法是:=60(种),答案为B错因三:思维不严所致例9(2006年上海高考题)在平面直
16、角坐标系xoy中:直线L与抛物线y2=2x相交于A、B两点,求证:“如果直线L过点T(3.0),那么=3”是真命题错解:设直线L的方程为:y=k(x-3)与抛物线y2=2x联立,消去y得:Ky2-2y-6k=0,令A(x1, y1),B(x2,y2),则y1y2=-6,而X1=y12,X2=y22,所以= X1X2+y1y2=(y1y2)2+ y1y2=3,故命题是真命题错因诊断直线的倾斜角永远存在,但斜率却不一定存在,因此涉及到直线问题一般要分斜率K存在与不存在二种情况去分类讨论正解:当斜率存在时,同上;当斜率不存在时:直线L的方程为X=3,此时直线L与抛物线y2=2x相交于A(3,), B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 高考 易错题 大盘 文科
限制150内