第十三章梯度校正参数辩识方法优秀PPT.ppt
《第十三章梯度校正参数辩识方法优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第十三章梯度校正参数辩识方法优秀PPT.ppt(62页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十三章梯度校正参数辩识方法1第一页,本课件共有62页12.1 梯度校正参数辩识方法梯度校正参数辩识方法2第二页,本课件共有62页引言引言n最小二乘类参数辩识递推算法最小二乘类参数辩识递推算法n新的参数估计值新的参数估计值=老的参数估计值老的参数估计值+增益矩阵增益矩阵 新息新息n梯度校正参数辩识方法(简称梯度校正法)梯度校正参数辩识方法(简称梯度校正法)n递推算法同样具有递推算法同样具有 的结构的结构n基本原理不同于最小二乘类方法基本原理不同于最小二乘类方法n基本做法基本做法 沿着准则函数的负梯度方向,逐步修正模型参数沿着准则函数的负梯度方向,逐步修正模型参数估计值,直至准则函数达到最小值。
2、估计值,直至准则函数达到最小值。3第三页,本课件共有62页主要内容主要内容n确定性问题的梯度校正参数辩识方法确定性问题的梯度校正参数辩识方法n随机性问题的梯度校正参数辩识方法随机性问题的梯度校正参数辩识方法n随机逼近法随机逼近法4第四页,本课件共有62页确定性问题的梯度校正参数辩识方法确定性问题的梯度校正参数辩识方法n设过程的输出设过程的输出n参数参数 的线性组合的线性组合n如果输出如果输出 和输入和输入 是可以是可以准确测量的,则准确测量的,则 式过程称作式过程称作确定性过程确定性过程5第五页,本课件共有62页n确定性过程确定性过程n置置过程过程 6第六页,本课件共有62页n若过程参数的真值
3、记作若过程参数的真值记作n则则n在离散时间点可写成在离散时间点可写成n其中其中7第七页,本课件共有62页n例如例如n用差分方程描述的确定性过程用差分方程描述的确定性过程n可以化成可以化成8第八页,本课件共有62页n现在的问题现在的问题n如何利用输入输出数据如何利用输入输出数据 和和n确定参数确定参数 在在 时刻的估计值时刻的估计值n使准则函数使准则函数n式中式中9第九页,本课件共有62页n解决上述问题的方法解决上述问题的方法n可以是梯度校正法,通俗地说最速下降法可以是梯度校正法,通俗地说最速下降法n沿着沿着 的负梯度方向不断修正的负梯度方向不断修正 值值n直至直至 达到最小值达到最小值10第十
4、页,本课件共有62页n数学表达式数学表达式n -维的对称阵,称作加权阵维的对称阵,称作加权阵n -准则函数准则函数 关于关于 的梯度的梯度11第十一页,本课件共有62页n当准则函数当准则函数 取取 式时式时12第十二页,本课件共有62页n 式可写成式可写成n -确定性问题的确定性问题的梯度校正参数估计递推公式梯度校正参数估计递推公式n其中权矩阵的选择至关重要其中权矩阵的选择至关重要13第十三页,本课件共有62页随机性问题的梯度校正参数辩识方法随机性问题的梯度校正参数辩识方法n随机性问题的提法随机性问题的提法n确定性问题的梯度校正法与其他辩识方法相比确定性问题的梯度校正法与其他辩识方法相比n最大
5、的优点:计算简单最大的优点:计算简单n缺点:如果过程的输入输出含有噪声,这种方法不能用缺点:如果过程的输入输出含有噪声,这种方法不能用n随机性问题的梯度校正法随机性问题的梯度校正法n特点:计算简单,可用于在线实时辩识特点:计算简单,可用于在线实时辩识n缺陷:事先必须知道噪声的一阶矩和二阶矩统计特性缺陷:事先必须知道噪声的一阶矩和二阶矩统计特性14第十四页,本课件共有62页n随机性问题随机性问题15第十五页,本课件共有62页n设过程的输出设过程的输出n模型参数模型参数 的线性组合的线性组合n输入输出数据含有测量噪声输入输出数据含有测量噪声16第十六页,本课件共有62页n其中其中n 和和 为零均值
6、的不相关随机噪声为零均值的不相关随机噪声17第十七页,本课件共有62页n置置n则则18第十八页,本课件共有62页n现在的问题现在的问题n利用输入输出数据利用输入输出数据 和和n确定参数确定参数 在在 时刻的估计值时刻的估计值n使准则函数使准则函数n其中其中19第十九页,本课件共有62页随机逼近法随机逼近法n随机逼近法随机逼近法n梯度校正法的一种类型梯度校正法的一种类型n颇受重视的参数估计方法颇受重视的参数估计方法20第二十页,本课件共有62页随机逼近原理随机逼近原理n考虑如下模型的辩识问题考虑如下模型的辩识问题n -均值为零的噪声均值为零的噪声n模型的参数辩识模型的参数辩识n通过极小化通过极小
7、化 的方差来实现的方差来实现n即求参数即求参数 的估计值使下列准则函数达到极小值的估计值使下列准则函数达到极小值21第二十一页,本课件共有62页n准则函数的一阶负梯度准则函数的一阶负梯度n令其梯度为零令其梯度为零22第二十二页,本课件共有62页n原则上原则上n由由 式可以求得使式可以求得使 的参数估计值的参数估计值n但,因为但,因为 的统计性质不知道的统计性质不知道n因此因此 式实际上还是无法解的式实际上还是无法解的23第二十三页,本课件共有62页n如果如果n 式左边的数学期望用平均值来近似式左边的数学期望用平均值来近似n则有则有n这种近似使问题退化成最小二乘问题这种近似使问题退化成最小二乘问
8、题24第二十四页,本课件共有62页n研究研究 式的随机逼近法解式的随机逼近法解n设设 是标量,是标量,是对应的随机变量是对应的随机变量n 是是 条件下条件下 的概率密度函数的概率密度函数n则随机变量则随机变量 关于关于 的条件数学期望为的条件数学期望为n记作记作n它是它是 的函数,称作的函数,称作回归函数回归函数25第二十五页,本课件共有62页n对于给定的对于给定的n设下列方程,具有唯一的解设下列方程,具有唯一的解n当当 函数的形式及条件概率密度函数函数的形式及条件概率密度函数 都都不知道时不知道时n求下列方程的解释是困难的求下列方程的解释是困难的n可以利用可以利用随机逼近法求解随机逼近法求解
9、26第二十六页,本课件共有62页n随机逼近法随机逼近法n利用变量利用变量 及其对应的随机变量及其对应的随机变量n通过迭代计算通过迭代计算n逐步逼近方程逐步逼近方程 式的解式的解27第二十七页,本课件共有62页n常用的常用的迭代算法迭代算法nRobbins Monro Robbins Monro 算法算法nKiefer Wolfowitz Kiefer Wolfowitz 算法算法28第二十八页,本课件共有62页12.2 极大似然法和预报误差方法极大似然法和预报误差方法29第二十九页,本课件共有62页引言引言n极大似然法极大似然法n一种非常有用的传统估计方法一种非常有用的传统估计方法n由由 Fi
10、sherFisher 发展起来的发展起来的n基本思想可追溯到高斯基本思想可追溯到高斯(1809 1809 年)年)n用于动态过程辩识可以获得良好的估计性质用于动态过程辩识可以获得良好的估计性质30第三十页,本课件共有62页n最小二乘法和梯度校正法最小二乘法和梯度校正法n计算简单计算简单n参数估计具有优良的统计性质参数估计具有优良的统计性质n噪声的先验知识要求也不高噪声的先验知识要求也不高n极大似然法极大似然法n基本思想与最小二乘法和梯度校正法完全不同基本思想与最小二乘法和梯度校正法完全不同31第三十一页,本课件共有62页n极大似然法极大似然法n需要构造一个以数据和未知参数为自变量的似然函数需要
11、构造一个以数据和未知参数为自变量的似然函数n通过极大化似然函数获得模型的参数估计值通过极大化似然函数获得模型的参数估计值32第三十二页,本课件共有62页n意味着意味着n模型输出的概率分布将最大可能地逼近实际过程输出的概模型输出的概率分布将最大可能地逼近实际过程输出的概率分布率分布n通常要求具有能够写出输出量的条件概率密度函数通常要求具有能够写出输出量的条件概率密度函数的先验知识的先验知识n独立观测的条件下,必须知道输出量的概率分布独立观测的条件下,必须知道输出量的概率分布n在序贯观测的条件下,需要确定基于在序贯观测的条件下,需要确定基于 时刻以前的数据时刻以前的数据在在 时刻输出量的条件概率分
12、布时刻输出量的条件概率分布33第三十三页,本课件共有62页n预报误差方法预报误差方法n需要事先确定一个预报误差准则函数需要事先确定一个预报误差准则函数n利用预报误差的信息来确定模型的参数利用预报误差的信息来确定模型的参数n某种意义上某种意义上n与极大似然法等价的与极大似然法等价的n或极大似然法的一种推广或极大似然法的一种推广34第三十四页,本课件共有62页n极大似然法和预报误差方法极大似然法和预报误差方法n优点:参数估计量具有良好的渐近性质优点:参数估计量具有良好的渐近性质n缺点:计算量比较大缺点:计算量比较大35第三十五页,本课件共有62页极大似然原理极大似然原理n设设 是一个随机变量是一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十三 梯度 校正 参数 方法 优秀 PPT
限制150内