浙大版概率论与数理统计答案---第五章.doc
《浙大版概率论与数理统计答案---第五章.doc》由会员分享,可在线阅读,更多相关《浙大版概率论与数理统计答案---第五章.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
第五章 大数定律及中心极限定理注意: 这是第一稿(存在一些错误)1、 解(1)由于,且,利用马尔科夫不等式,得(2),利用切比雪夫不等式,所求的概率为:2、解:,3、 解 服从参数为0.5的几何分布,可求出于是令,利用切比雪夫不等式,得有从而可以求出4、解:,。则,。,。,所以。5、 解 服从大数定律。由题意得:由根据马尔科夫大数定律,可判断该序列服从大数定律的。6、解:(1),则连续。,则,有,则,。(2) 连续,则,有,则,。(3),故(4)原式依概率收敛,即 7 解 (1)由题意得:根据推论5.1.4,可求得(2)由题意得:,根据中心极限定理,可知(3) ,利用中心极限定理,可知从而8、解:,9、解 (1)由题意得:记,引入随机变量,且于是服从二项分布:方法一:(Y的精确分布)方法二(泊松分布)近似服从参数为的泊松分布方法三:(中心极限定理)近似服从于是: (2)设至少需要n次观察记,这时于是近似服从经查表有,从而求得n=11710、解:,则 11 、解 (1)由题意得,引入随机变量,且所求的概率为:(2)用表示第i名选手的得分,则并且同时,于是所求的概率为:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙大 概率论 数理统计 答案 第五
限制150内