《统计学原理期末复习(计算题).doc》由会员分享,可在线阅读,更多相关《统计学原理期末复习(计算题).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、统计学原理期末复习(计算题)2008年6月301某单位40名职工业务考核成绩分别为: 68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81单位规定:60分以下为不及格,6070分为及格,7080分为中,8090分为良,90100分为优。要求:(1) 将参加考试的职工按考核成绩分组并编制一张考核成绩次数分配表; (2)指出分组标志及类型及采用的分组方法;(3)根据整理表计算职工业务考核平均成绩;(4)分析本单位职
2、工业务考核情况。解:(1)成 绩职工人数频率(%)60分以下60-7070-8080-9090-10036151247.51537.53010合 计40100 (2)分组标志为成绩,其类型为数量标志;分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;(3)平均成绩:(分)(4)本单位的职工考核成绩的分布呈两头小, 中间大的 正态分布的形态,平均成绩为77分,说明大多数职工对业务知识的掌握达到了该单位的要求。2某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如下:日产量(件)工人数(人)1525354515383413要求:计算乙组平
3、均每个工人的日产量和标准差; 比较甲、乙两生产小组哪个组的日产量更有代表性? 解:(1)(件) (件) (2)利用标准差系数进行判断: 因为0.305 0.267故甲组工人的平均日产量更有代表性。 3采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件.要求:(1)计算合格品率及其抽样平均误差(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。(3)如果极限误差为2.31%,则其概率保证程度是多少? 解:(1)样本合格率p = n1n = 190200 = 95% 抽样平均误差: = 1.54%(2)抽样极限误差p= tp = 21.54%
4、 = 3.08%下限:p=95%-3.08% = 91.92%上限:p=95%+3.08% = 98.08% 则:总体合格品率区间:(91.92% 98.08%) 总体合格品数量区间(91.92%2000=1838件 98.08%2000=1962件) (3)当极限误差为2.31%时,则概率保证程度为86.64% (t=)4某单位按简单随机重复抽样方式抽取40名职工,对其业务情况进行考核,考核成绩平均分数77分,标准差为10。54分,以95.45%的概率保证程度推断全体职工业务考试成绩的区间范围。解:全体职工考试成绩区间范围是:下限=上限= 即全体职工考试成绩区间范围在73.6680.3分之间
5、。5从某行业随机抽取家企业进行调查,所得有关数据如下:企业产品销售额(万元)销售利润(万元)123456501525374865124681525要求:()拟合销售利润()对产品销售额()的回归直线,并说明回归系数的实际意义。 ()当销售额为万元时,销售利润为多少? 解:()配合回归方程= = 回归方程为:. 回归系数0.3950,表示产品销售额每增加万元,销售利润平均增加0.3950万元。 ()当销售额为万元时,即,代入回归方程:.(万元) 6 某商店两种商品的销售资料如下:商品单位销售量单价(元)基期计算期基期计算期甲乙件公斤50150601608121014要求:(1)计算两种商品销售额
6、指数及销售额变动的绝对额;(2)计算两种商品销售量总指数及由于销售量变动影响销售额的绝对额;(3)计算两种商品销售价格总指数及由于价格变动影响销售额的绝对额。 解:(1)商品销售额指数= 销售额变动的绝对额:元 (2)两种商品销售量总指数= 销售量变动影响销售额的绝对额元 (3)商品销售价格总指数= 价格变动影响销售额的绝对额:元 7已知两种商品的销售资料如表:品 名单位销售额(万元)2002年比2001年销售量增长(%)2001年2002年电 视自行车台辆500045008880420023-7合计-950013080- 要求: (1)计算销售量总指数; (2)计算由于销售量变动,消费者增加
7、(减少)的支出金额。 (3) 计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。 解:(1)销售量总指数 (2)由于销售量变动消费者多支付金额 =10335-9500=835(万元) (3)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。 参见上题的思路。通过质量指标综合指数与调和平均数指数公式之间的关系来得到所需数据。8有某地区粮食产量如下:年份200020012002200320042005粮食产量(万吨20022025129130552836要求:(1)计算2001年-2005年该地区粮食产量的环比发展速度、年平均增长量和年平均发展速度;(2)如果从2005年以后该地区的粮食产量按8%的增长速度发展,2010年该地区的粮食产量将达到什么水平?解:(1)解:时间200020012002200320042005粮食产量(万吨)逐期增长量(万吨)环比发展速度(%)200-2202011025131114.029140115.9305.5145510498283.6-21.99283年平均增长量 =16.73(万吨) (或年平均增长量 )年平均发展速度=(2)=431.44(万斤)
限制150内