气候的形成过程课件.ppt
《气候的形成过程课件.ppt》由会员分享,可在线阅读,更多相关《气候的形成过程课件.ppt(116页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、气候的形成过程第一节气候形成的辐射因子第二节气候形成的环流因子第三节海陆分布对气候的影响第四节地形气候气候的形成和变化可归纳为以下诸因子:太阳辐射宇宙地球物理因子,环流因子(包括大气环流和洋流),下垫面因子(包括海陆分布、地形与地面特性、冰雪覆盖),人类活动的影响。本章着重阐明、因子在气候形成中的作用。第一节气候形成的辐射因子太阳辐射在大气上界的时空分布是由太阳与地球间的天文位置决定的,又称天文辐射。由天文辐射所决定的地球气候称为天文气候,它反映了世界气候的基本轮廓。除太阳本身的变化外,天文辐射能量主要决定于日地距离、太阳高度和白昼长度。1.日地距离地球绕太阳公转的轨道为椭圆形,太阳位于两焦点
2、之一上。因此日地距离时时都在变化,这种变化以一年为周期。地球上受到太阳辐射的强度是与日地间距离的平方成反比的,在某一时刻,大气上界的太阳辐射强度I应为式中b为该时刻的日地距离,a为地球公转轨道的平均半径,I0为太阳常数1370W/m2,假使取a=1(1个天文单位),b/a用表示,则一、天文辐射计算一年中地球在公转轨道上运行,就近代情况而言,在1月初经过近日点,7月初经过远日点,按上式计算,便得到各月一日大气上界太阳辐射强度变化值(给出与太阳常数相差的百分数,如表6.1所示):由上表可见,大气上界的太阳辐射强度在一年中变动于+3.4-3.5之间。如果略去其它因素的影响,北半球的冬季应当比南半球的
3、冬季暖些,夏季则比南半球凉些。但因其它因素的作用,实际情况并非如此。2.太阳高度太阳高度是决定天文辐射能量的一个重要因素。利用天球的地平坐标和赤道坐标来表示太阳在天球上的位置,用球面三角公式可以求出任意时刻太阳高度的表达式如下sinh=sinsincoscoscos(63)是计算太阳高度角的基本方程,式中h为太阳高度,为所在地的纬度。为太阳赤纬,赤纬在赤道以北为正,在赤道以南为负,一年内在北半球夏至日为+2327,冬至日为2327,春、秋分日=0。为时角,在一天中正午时=0,距离正午每差1小时,时角相差15,午前为负值,午后为正值。由第二章(215)式已知,在太阳高度为h时,单位面积上所获得的
4、太阳能为Isinh。再考虑到日地距离的影响,那么每单位时间落到大气上界任意地点的单位水平面上的天文辐射能量为由(6.5)式可以求出任一地点、任一天太阳辐射在大气上界流入量(天文辐射)的日变化,以及一年中任一天白昼时任一时刻,地球表面水平面上天文辐射的分布。3.白昼长度指从日出到日没的时间间隔。日出和日没太阳正好位于地平圈上,太阳高度h=0,以-0为日出的时角,0为日没的时角,根据(63)式可以求得sinh=sinsincoscoscos0=0cos0=tgtg(66)因日出、日没的时角绝对值相等,所以20就是白昼长度,也就是天文辐射中的可照时间。它是随地理纬度和太阳赤纬而变化的。要计算任一地点
5、在一天内,1m2水平面上天文辐射的总能量,可按下式推算。由(65)式可知考虑到时间t与时角具有如下关系式中T为1日长度(24h=1440min)将上式代入(65)式,则对(67)式从日出到日没,即从-w0-+w0进行积分,于是得到上式中=458.4,太阳赤纬,日地相对距离和时角0都可由天文年历中查得,因此根据(68)式可以计算出某纬度在某日(查出该日的、和0)天文辐射的日总量Qs。二.天文气候由(68)式计算出的若干纬度上天文辐射的年变化如图62所示。全球天文辐射的立体模式如图63所示。北半球水平面上天文辐射的分布则如表62所示。从上列图表中可以看出,天文辐射的时空分布具有以下一些基本特点,这
6、些特点构成了因纬度而异的天文气候带。在同一纬度带上,还有以一年为周期的季节性变化和因季节而异的日变化。(1)天文辐射能量的分布是完全因纬度而异的。就表62看来,全球获得天文辐射最多的是赤道,随着纬度的增高,辐射能渐次减少,最小值出现在极点,仅及赤道的40。这种能量的不均衡分布,必然导致地表各纬度带的气温产生差异。地球上之所以有热带、温带、寒带等气候带的分异,与天文辐射的不均衡分布有密切关系。(2)夏半年获得天文辐射量的最大值在2025的纬度带上,由此向两极逐渐减少,最小值在极地。这是因为在赤道附近太阳位于或近似位于天顶的时间比较短,而在回归线附近的时间比较长。例如在6N与6S间,在春分和秋分附
7、近,太阳位于或近似位于天顶的时间各约30天。在纬度17.523.5的纬度带上,在夏至附近,位于或近似位于天顶的时间约86天。赤道上终年昼夜长短均等,而在2025纬度带上,夏季白昼时间比赤道长,这是“热赤道”北移(就北半球而言)的一个原因。又由于夏季白昼长度随纬度的增高而增长,所以由热带向极地所受到的天文辐射量,随纬度的增高而递减的程度也趋于和缓,表现在高低纬度间气温和气压的水平梯度也是夏季较小。(3)冬半年北半球获得天文辐射最多的是赤道。随着纬度的增高,正午太阳高度角和每天白昼长度都迅速递减,所以天文辐射量也迅速递减下去,到极点为零。表现在高低纬度间气温和气压的水平梯度也是冬季比较大。(4)天
8、文辐射的南北差异不仅随冬、夏半年而有不同,而且在同一时间内随纬度亦有不同。在两极和赤道附近,天文辐射的水平梯度都较小,而以中纬度约在4555间水平梯度最大,所以在中纬度,环绕整个地球,相应可有温度水平梯度很大的锋带和急流现象。(5)夏半年与冬半年天文辐射的差值是随着纬度的增高而加大的。表现在气温的年较差上是高纬度大,低纬度小。再从图62和图63上可以看出,在赤道附近(约在南北纬15间),天文辐射日总量有两个最高点,时间在春分和秋分。在纬度15以上,天文辐射日总量由两个最高点逐渐合为一个。在回归线及较高纬度地带,最高点出现在夏至日(北半球)。辐射年变化的振幅是纬度愈高愈大,从季节来讲,则是南北半
9、球完全相反。(6)在极圈以内,有极昼、极夜现象。在极夜期间,天文辐射为零。在一年内一定时期中,到达极地的天文辐射量大于赤道。例如,在5月10日到8月3日期间内,射到北极大气上界的辐射能就大于赤道。在夏至日,北极天文辐射能大于赤道0.368倍,南极夏至日(12月22日)天文辐射量比北极夏至日(6月22日)大。这说明南北半球天文辐射日总量是不对称的,南半球夏季各纬圈日总量大于北半球夏季相应各纬圈的日总量。相反,南半球冬季各纬圈的日总量又小于北半球冬季相应各纬圈的日总量。这是日地距离有差异的缘故。地球天文气候带第二节气候形成的环流因子气候形成的环流因子包括大气环流和洋流,这二者间有密切的关联。本节首
10、先阐明海气相互作用与环流,再依次论述环流在热量交换和水分循环中的作用。最后以厄尔尼诺事件为例,说明环流变异导致气候的变异。海洋与大气之间通过一定的物理过程发生相互作用,组成一个复杂的耦合系统。海洋对大气的主要作用在于给大气热量及水汽,为大气运动提供能源。大气主要通过向下的动量输送(风应力),产生风生洋流和海水的上下翻涌运动,两者在环流的形成、分布和变化上共同影响着全球的气候。海洋占地球表面积的70.8,海洋的比热(4186.8J/kgK)约为空气比热(718J/kgK)的6倍,全球10m深的海洋水的总质量就相当于整个大气圈的质量。如前所述,到达地表的太阳辐射能约有80为海洋所吸收,且将其中85
11、左右的热能储存在大洋表层(约自表面至100m深处),这部分能量再以长波辐射、蒸发潜热和湍流显热等方式输送给大气。一、海气相互作用与环流图611给出年平均逐日从海洋输入大气的总热量。海洋还通过蒸发作用,向大气提供大约86的水汽来源。在图611的总热量中,平均而言,潜热约占显热的8倍强。这种热量的输送,不仅影响大气的温度分布,更重要的是它是驱使大气运动的能源,在大气环流的形成和变化中有极为重要的作用。由此可见,海洋是大气环流运转的能量和水汽供应的最主要源地和储存库。海洋是从大气圈的下层向大气输送热量和水汽,而大气运动所产生的风应力则向海洋上层输送动量,使海水发生流动,形成“风生洋流”,亦称“风海流
12、”。由图612可见,世界洋流分布与地面风向分布密切相关。在热带、副热带海洋,北半球洋流基本上是围绕副热带高压作顺时针向流动,在南半球则作反时针向流动。由图612可见,因信风的推动,在赤道具有由东向西的洋流,在北半球称北赤道洋流,在南半球称南赤道洋流。为维持海水的连续,于是在南北赤道洋流间自然就发展一种补偿洋流,方向与赤道洋流相反,由西向东流,称赤道逆流。在副热带高压西侧,具有流向中高纬度方向的洋流。因海水来自低纬度,其温度比流经地区的水温高,所以是暖流。例如,大西洋中的湾流水温就很高,势力也很强,它不仅有北赤道洋流的水流汇入墨西哥湾,而且还有一部分南赤道洋流注入,然后出佛罗里达海峡,沿美国东岸
13、北流。这支暖洋流流量大,对沿岸气候影响特别显著。与此相对应,在北太平洋西部有黑潮暖流,在南太平洋有东澳大利亚暖流、在南印度洋有莫桑比克暖流,南大西洋有巴西暖流。在纬度40以上的洋面,洋流绕着副极地低压流动,这在北半球表现最显著。例如,北大西洋的湾流受冰岛低压东南部西南风的影响,就有一支长驱向东北方向流动,称北大西洋暖流,沿欧洲海岸伸入到巴伦支海。在冰岛低压的西部盛行北风和西北风,形成格陵兰冷流和拉布拉多冷流。这些冷流来自北冰洋,携有冰块和巨大的冰山,冷流的密度大,当它与湾流相遇时,就潜入湾流之下。北太平洋副极地低压中心位于阿留申群岛附近,环绕此低压也有类似北大西洋的逆时针向洋流。在北美西岸有阿
14、拉斯加暖流,在亚洲东岸有堪察加冷流。不过由于阿留申低压没有冰岛低压强,再加上北太平洋的地形与北大西洋不同,所以这里东西岸洋流强度比较弱。综上所述,海洋提供给大气大量的潜热和显热,成为大气运动的能源,使大气环流得以形成和维持。而大气环流又推动海水流动,产生风生洋流。这里必须指出:洋流的流向除受风力作用外还受地转偏向力和海水摩擦力的作用,因此洋流的流向并不和风向一致,在北半球要向右偏,南半球要向左偏。洋流的流速远比风速小。从铅直方向而言,洋流的速度以海洋表面为最大,因摩擦力的影响,愈向下层流速愈小,至一定深度减弱为零。由于海洋不是无界的,风场也是不均匀的,风生洋流会产生海水质量的辐合和辐散,特别是
15、在海岸附近,由于侧边界的作用这种辐合和辐散作用尤为明显。例如在热带、副热带大陆西岸,因离岸风的作用,把表层海水吹流而去造成海水质量的辐散,必然引起深层海水上翻(Upwelling),由于深层海水水温比表层水温低,因此在上翻区海水水温要比同纬度海洋表面的平均水温为低。相反,如果风向改变,海水质量在此辐合,必然引起海水下翻(downwelling),海面水温将显著增高,厄尔尼诺事件(后详)就与此有密切关系。在暖海水表面一般是水温高于它上面的气温,海面向空气提供的显热和潜热都比较多,不仅使空气增温,且使气层处于不稳定状态,利于云和降水的形成。热带气旋大都源出于低纬度暖洋流表面即系此故。在冷洋流表面,
16、空气层结稳定,有利于雾的形成而不易产生降水,因此在低纬度大陆西岸往往形成多雾沙漠。大气环流和洋流对气候系统中热量的重新分配起着重要作用。它一方面将低纬度的热量传输到高纬度,调节了赤道与两极间的温度差异,另一方面又因大气环流的方向有由海向陆与由陆向海的差异和洋流冷暖的不同,使同一纬度带上大陆东西岸气温产生明显的差别,破坏了天文气候的地带性分布。二、环流与热量输送由前所述地球约在南北纬35间,地-气系统的辐射热量有盈余,在高纬则相反。但根据多年观测的温度记录,却未见热带逐年增热,也未见极地逐年变冷,这必然存在着热量由低纬度向高纬度的传输,这种传输是由大气环流和洋流来进行的。图614是用上述公式计算
17、所得的全球由低纬到高纬通过大气环流输送的显热、潜热及洋流输热的年平均值。(一)赤道与极地间的热量输送从大气环流输送形式来讲,有平均经圈环流输送和大型涡旋输送两种。在显热输送上,两者具同一量级。潜热的经向输送在3070N地带,则以大型涡旋输送为主,平均经圈环流次之,但在低纬度则基本上由信风与反信风的常定输送来完成。大型涡旋指的是移动性气旋、反气旋、槽和脊等。气旋移动的方向一般具有向北的分速,且在气旋的前部(反气旋的后部)常有暖平流,槽前(脊后)亦常有暖平流,所以能把热量由低纬度输送到高纬度。反气旋的移动方向一般具有向南的分速,且在反气旋的前部(气旋的后部)常有冷平流,脊前(槽后)亦常有冷平流,它
18、们能把冷空气从高纬度输送到低纬度,这是调节高低纬度间热量的一个重要途径。据最新估计在环流的经向热量输送中,洋流的作用占33,大气环流的作用占67。在赤道至纬度30(低纬度地带)洋流的输送超过大气环流的输送。在30N以北,大气环流的输送超过了洋流的输送。这样海洋-大气“接力式”的经向热量输送是维持高低纬度能量平衡的主要机制。由于环流的作用调节了高低纬度间的温度,表63列出了各纬圈上辐射差额温度与实际温度的比较。由上表可见,由于环流经向输送热量的结果,低纬度降低了213,中高纬度却升高了623。据最新资料,赤道实测温度比辐射差额温度降低了14,而极地则提高了25,因此大气环流和洋流在缓和赤道与极地
19、间南北温差上,确实起了巨大的作用。这种作用在海洋表面上比大陆上更为显著(见表64),尤其是冬季在北大西洋(经度0线)上因暖洋流强度大,赤道至北极圈的气温差别只有22,比欧亚大陆(经度130E线)上要小得多。大气环流和洋流对海陆间的热量传输有明显作用。冬季海洋是热源,大陆是冷源,在中高纬度盛行西风,大陆西岸是迎风海岸,又有暖洋流经过,故环流由海洋向大陆输送的热量甚多,提高了大陆西岸的气温。从图612可见,北大西洋和北太平洋东岸(大陆西岸)暖洋流水温正距平均在5以上,特别是北大西洋暖流势力最强,又由于北大西洋洋盆的有利形状,使得这支暖洋流流经冰岛、挪威的北角,一部分能远达巴伦支海,在盛行西到西南风
20、的作用下,使西北欧的气温特别暖和。(二)海陆间的热量传输从1月海平面等温线图上可以明显地看出,这里的等温线向极地凸出,并几乎与海岸线平行,愈靠近大西洋海岸气温愈暖,愈向内陆,气温乃逐渐变低,到了东西伯利亚维尔霍扬斯克附近,1月平均气温降到-50,成为世界“寒极”,在鄂霍次克海海面因位于亚欧大陆东侧,受西来大陆冷空气的影响,温度甚低,成为世界“冰窖”,北美大陆也有类似的西岸暖、东岸冷的现象,但海陆温差不像亚欧大陆那样突出。在夏季,大陆是热源,海洋是冷源,这时大陆上热气团在大陆气流作用下向海洋输送热量。从7月海平面等温线图上可见,在热带、副热带大陆上气温最高,在大陆热风影响下,使红海海面气温显得特
21、别高(大于32)。这时大陆通过大气环流向海洋输送热量,但输送值远比冬季海洋向大陆的输送量小。夏季在迎风海岸气温比较凉,在冷洋流海岸因系离岸风,仅贴近海边处,受海洋上翻水温的影响,气温比大陆内部要低得多。这种海陆间的热量交换是造成同一纬度带上,大陆东西两岸和大陆内部气温有显著差异的重要原因。水分循环的过程是通过蒸发、大气中的水分输送、降水和径流(含地表径流和地下径流)四者来实现的。如图615所示,由于太阳能的输入,从海洋表面蒸发到空中的水汽,被气流输送到大陆上空,通过一定的过程凝结成云而降雨。地面的雨水又通过地表江河和渗透到地下的水流,再回到海洋,这称为水分的外循环(又称大循环),也就是海陆之间
22、的水分交换。水分从海洋表面蒸发,被气流带至空中凝结,然后以降水形式回落海中,以及水分从陆地表面的水体、湿土蒸发及植物蒸腾到空中凝结,再降落到陆地表面,这就是水分内循环(又称小循环)。无论是在水分外循环或是水分内循环中,大气环流都起着重要作用。三、环流与水分循环就全球而论,水分循环各个分量的估计值如下:全球平均年降水量为1040mm,以此值为100个单位,由海洋蒸发的水汽相当于86个单位,降回到海洋的降水量约为80个单位,海洋蒸发的水汽有6个单位由大气径流输送到大陆上空,陆地表面从河流湖泊、潮湿土壤和植物等蒸发、蒸腾出来的水汽有14个单位,降落到陆地的降水约有20个单位,多出的6个单位由地表和地
23、下径流流到海洋,以保持各自的水分平衡,全球水的总量约有97.2储存在世界大洋之中,其次冰原、冰川和海冰约占2.15,地下水占0.62,大气圈中水分仅占0.001。据长期观测,地球上的总水量是不变的,B.N.维尔纳茨基认为,甚至在地球整个地质历史时期的总水量也是不变的,因而水分的收入与支出是平衡的,这就叫做地球上的水量平衡。水量平衡是水分循环过程的结果,而水分循环又必须通过大气环流来实现。现根据水分循环中三个分量:蒸发、降水和大气中的水分输送(大气径流)的平均经向分布(图616)可说明大气环流与它们的关系。首先在蒸发过程中,在水源充足的条件下(如海洋),蒸发的快慢和蒸发量的多寡要受环流方向和速度
24、的影响。从图616b可以看出海洋上年平均蒸发量最高峰出现在1520N和1020S的信风带,这是风向和风速都很稳定的地带。信风又来自副热带高压,最有利于海水的蒸发,而赤道低压带因风速小,海面蒸发量反而相形见绌。云和降水的形成以及降水量的大小与大气环流的形势更是息息相关,图616a明显地表示出世界降水的纬度带分布有两个高峰,一在赤道低压带,这里有辐合上升气流,产生大量的对流雨,一个在中纬度西风带,在冷暖气团交绥的锋带上,气旋活动频繁,降水量因之亦较多,是次于赤道的第二个多雨带。在这两个高峰之间,是副热带高压带,盛行下沉气流,因此即使在海洋表面,降水却甚稀少,如果将图616(b)中全球年平均蒸发量曲
25、线与(a)图年平均降水曲线相重叠,则可见在1337N地带及740S地带蒸发量大于降水量,水汽有盈余,在赤道带和中、高纬度降水量大于蒸发量,水汽有亏损,因此要达到水分平衡,则需大气径流将水汽从盈余的地区输送到水汽亏损的地区。从图616c中可以看出,以副热带高压为中心,通过信风和盛行西南风(北半球)将水汽分别向南和向北作经向的输送(见图中箭头方向)。如上所述,环流因子在气候形成中起着重要作用。当环流形势在某些年份出现异常变化时,就会直接影响某些时期内的天气和气候,出现异常。近年来频繁出现的厄尔尼诺/南方涛动(ENSO)就是一个显著的实例。厄尔尼诺一词源出于西班牙文“ElNino”,原意是“圣婴”。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 气候 形成 过程 课件
限制150内