高等数学I课程教学大纲(试用稿).doc
《高等数学I课程教学大纲(试用稿).doc》由会员分享,可在线阅读,更多相关《高等数学I课程教学大纲(试用稿).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学I课程教学大纲(试用稿)课程代码: 适用专业:理科类学时数:180 学分数:10执笔人:刘 群 编写时间:2004年9月一、课程的性质和目的高等数学课程是师范类大学各相关专业学生的一门必修的重要基础理论课,它为学生继续学习各专业课提供必要的数学基础知识,也为学生解决一些实际问题提供了有效的数学方法,同时,通过180学时的教学,逐步培养学生具有抽象概话问题的能力,较强的逻辑推理能力和较熟练的运算能力,从而提高综合运用所学知识去分析问题、解决问题的能力,为进一步学习后继专业课打下较好的基础。二、教学内容及要求第一章 函数与极限(讲授16学时,习题课2学时)(一)教学要求1、理解函数、函数极
2、限、无穷小与无穷大及函数的连续的概念。2、掌握极限的性质及运算方法,会利用极限存在的准则,两个重要极限、等价无穷小及函数的连续性计算极限。3、了解闭区间上连续函数的性质,并会运用。(二)教学内容重点:函数的概念、极限的概念、极限的性质及其运算,连续函数的概念。难点:复合函数、分段函数的概念、极限的概念 1.1映射与函数 集合、映射、函数 1.2数列的极限 数列极限的定义、数列极限的性质 1.3函数的极限 函数极限的定义、函数极限的性质 1.4无穷小与无穷大 1.5极限运算法则 1.6极限存在准则,两个重要极限 1.7 无穷小的比较 1.8函数的连续与间断 函数的连续性、函数的间断点 1.9连续
3、函数的运算与初等函数的连续性 连续函数的和、差、积、商的连续性,反函数与复合函数的连续性初等函数的连续性 1.10闭区间上的连续函数的性质 有界性与最大值、最小值定理、零点定理与介值定理一致连续性第二章 导数与微分(讲授12学时,习题课2学时)(一)教学要求1、理解导数、微分的概念、相互关系、物理和几何意义,理解可导与连续之间的关系,了解高阶导数的概念。2、会求平面曲线的切线方程和法线方程,掌握基本初等函数的求导公式,会求各种类型函数的导数,简单函数的高阶导数,分段函数的一、二阶导数,了解微分的不变性,会求函数的微分。(二)教学内容重点:导数的概念、微分的概念、导数的几何意义和物理意义、初等函
4、数微分法。2.1导数概念 导数的定义、导数的几何意义、函数可导性与函数连续性的关系2.2函数的求导法则 函数的和、差、积、商的求导法则、反函数的求导法则、复合函数的求导法则、基本求导法则与求导公式 2.3高阶导数2.4隐函数及由参数方程所确定的函数的导数相关变化率2.5函数的微分 微分的定义、微分的几何意义、微分公式及运算法则、微分在近似计算中的应用第三章 微分中值定理与导数的应用(讲授18学时,习题课2学时)(一)教学要求1、理解并会用微分中值定理2、掌握导数在判断函数的单调性、求极值、求最值、判断函数图象的各种特征等方面的运用3、掌握洛必达法则、泰勒公式4、了解曲率和曲率半径的概念,并会计
5、算(二)教学内容重点:拉格朗日中值定理、泰勒公式、洛必达法则,函数增减性和凹凸性判别法、函数极值及其求法、最值问题。难点:中值定理、泰勒公式 3.1微分中值定理 罗尔定理、拉格朗日中值定理、柯西中值定理 3.2洛必达法则 3.3泰勒公式 3.4函数的单调性与曲线的凹凸性及拐点 3.5函数的极值、最大值及最小值 3.6函数图形的描绘 3.7曲率 弧微分、曲率及其计算公式、曲率园与曲率半径、*曲率中心计算公式、渐屈线与渐伸线 3.8方程的近似解第四章 不定积分(讲授14学时,习题课2学时)(一)教学要求1、理解原函数、不定积分的概念2、掌握不定积分的基本公式、掌握不定积分的性质、换元积分法及分部积
6、分法、会求有理函数、三角函数和简单无理函数的积分,会使用积分表。(二)教学内容重点:原函数、不定积分的概念、基本积分公式、换元积分与分部积分法 4.1不定积分的概念与性质 4.2 换元积分法 4.3分部积分法 4.4有理函数的积分4.5 积分表的使用第五章 定积分(讲授12学时,习题课2学时)(一)教学要求1、理解定积分的概念、性质2、理解变上限积分定义的函数,掌握牛顿莱布尼茨公式3、了解广义积分的概念,并会计算广义积分,会计算函数的平均值(二)教学内容重点:定积分概念。定积分中值定理,变上限定积分及其求导定理,牛顿莱布尼兹公式,定积分的换元积分法及分部积分法。难点:定积分的概念、变上限定积分
7、作为上限函数及其求导定理。5.1定积分的概念与性质5.2微积分基本公式 变速直线运动中位置函数与速度函数之间的联系、积分上限的函数及其导数,牛顿莱布尼茨公式 5.3定积分的换元法和分部积分法 5.4反常积分 5.5反常积分的审敛法、部函数第六章 定积分的应用(讲授6学时)(一)教学要求理解定积分的元素法,掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积,平行截面面积为已知的主体体积,功、引力、压力)。(二)教学内容重点:定积分的元素法、平面图形的面积、旋转体的体积、弧长、功。6.1定积分的元素法6.2定积分在几何学上的应用 平面图形的面积、体积、平
8、面曲线的弧长6.3定积分在物理学上的应用 变力沿直张线所作的功、水压力、引力第七章 空间解析几何与向量代数(讲授12学时,习题课2学时)(一)教学要求1、理解空间直角坐标系,理解向量的概念及其表示,掌握向量的运算,了解两个向量垂直、平行的条件,理解单位向量、方向数与量向余弧、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。2、掌握平面方程和直线方程及其求法,会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系解决有关问题。3会求点到直线的距离以及点到平面的距离4了解曲面方程和空间曲线方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线
9、平行于坐标轴的柱面方程,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求其方程。(二)教学内容重点:向量概念,向量的坐标表达式及向量运算平面的点法式方程,直线的对称方程,曲面方程的概念,空间曲线一般方程和参数方式,空间曲线在坐标平面上的投影。 7.1向量及其线性运算 向量概念、向量的线性运算、空间直角坐标系,利用坐标系作向量的线性运算,向量的模、方向角、投影。 7.2数量积、向量积、混和积 7.3曲面及其方程 曲面方程的概念、旋转曲面、柱面、二次曲面7.4空间曲线及其方程7.5平面及其方程 平面的点法式方程、平面的一般方程,两平面的夹角7.6空间直线及其方程 空间直线的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 课程 教学大纲 试用
限制150内