立体几何基础题题库.doc
《立体几何基础题题库.doc》由会员分享,可在线阅读,更多相关《立体几何基础题题库.doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、立体几何基础题题库301-350(有详细答案)301. 正三棱柱ABCA1B1C1的侧面三条对角线AB1、BC1、CA1中,AB1BC1.求证:AB1CA1.解析:方法1 如图,延长B1C1到D,使C1DB1C1.连CD、A1D.因AB1BC1,故AB1CD;又B1C1A1C1C1D,故B1A1D90,于是DA1平面AA1B1B.故AB1平面A1CD,因此AB1A1C.方法2 如图,取A1B1、AB的中点D1、P.连CP、C1D1、A1P、D1B,易证C1D1平面AA1B1B.由三垂线定理可得AB1BD1,从而AB1A1D.再由三垂线定理的逆定理即得AB1A1C.说明 证明本题的关键是作辅助面
2、和辅助线,证明线面垂直常采用下列方法:(1)利用线面垂直的定义;(2)证明直线垂直于平面内的两条相交直线;(3)证明直线平行于平面的垂线;(4)证明直线垂直于与这平面平行的另一平面.302. 已知:正三棱柱ABCABC中,ABBC,BC2,求:线段AB在侧面上的射影长.解析: 如图,取BC的中点D.ADBC,侧面底面ABC,AD侧面是斜线AB在侧面的射影.又ABBC,BC.设BBx,在Rt中,BEBD,.E是BBC的重心.BEBCx,解得:x.线段AB在侧面的射影长为.303. 平面外一点A在平面内的射影是A,BC在平面内,ABA,ABC,求证:coscoscos.解析: 过A作BC于C,连A
3、C.AA平面,BC垂直AC在平面内的射线.BCAC,cos.又cos,cos,coscoscos.304. ABC在平面内的射影是ABC,它们的面积分别是S、S,若ABC所在平面与平面所成二面角的大小为(090,则SScos.证法一 如图(1),当BC在平面内,过A作ADBC,垂足为D.AA平面,AD在平面内的射影AD垂直BC.ADBC.ADA.又SADBC,SADBC,cos,SScos.证法二 如图(2),当B、C两点均不在平面内或只有一点(如C)在平面内,可运用(1)的结论证明SScos.305. 求证:端点分别在两条异面直线a和b上的动线段AB的中点共面.证明 如图,设异面直线a、b的
4、公垂线段是PQ,PQ的中点是M,过M作平面,使PQ平面,且和AB交于R,连结AQ,交平面于N.连结MN、NR.PQ平面,MN,PQMN.在平面APQ内,PQa,PQMN,MNa,a,又PMMQ,ANNQ,同理可证NRb,RARB.即动线段的中点在经过中垂线段中点且和中垂线垂直的平面内.306. 如图,已知直三棱柱ABCA1B1C1中,ACB90,BAC30,BC1,AA1,M是CC1的中点,求证:AB1A1M.解析:不难看出B1C1平面AA1C1C,AC1是AB1在平面AA1C1C上的射影.欲证A1MAB1,只要能证A1MAC1就可以了.证:连AC1,在直角ABC中,BC1,BAC30, AC
5、A1C1.设AC1A1,MA1C1 tan,tg.cot(+)0,+90 即AC1A1M.B1C1C1A1,CC1B1C1,B1C1平面AA1CC1,AC1是AB1在平面AA1C1C上的射影.AC1A1M,由三垂线定理得A1MAB1.评注:本题在证AC1A1M时,主要是利用三角函数,证+90,与常见的其他题目不太相同.307. 矩形ABCD,AB2,AD3,沿BD把BCD折起,使C点在平面ABD上的射影恰好落在AD上.(1)求证:CDAB;(2)求CD与平面ABD所成角的余弦值.(1)证明 如图所示,CM面ABD,ADAB,CDAB(2)解:CM面ABDCDM为CD与平面ABD所成的角,cos
6、CDM作CNBD于N,连接MN,则MNBD.在折叠前的矩形ABCD图上可得DMCDCDCAABAD23.CD与平面ABD所成角的余弦值为308. 空间四边形PABC中,PA、PB、PC两两相互垂直,PBA45,PBC60,M为AB的中点.(1)求BC与平面PAB所成的角;(2)求证:AB平面PMC.解析:此题数据特殊,先考虑数据关系及计算、发现解题思路.解 PAAB,APB90在RtAPB中,ABP45,设PAa,则PBa,ABa,PBPC,在RtPBC中,PBC60,PBa.BC2a,PCa.APPC 在RtAPC中,AC2a(1)PCPA,PCPB,PC平面PAB,BC在平面PBC上的射影
7、是BP.CBP是CB与平面PAB所成的角PBC60,BC与平面PBA的角为60.(2)由上知,PAPBa,ACBC2a.M为AB的中点,则ABPM,ABCM.AB平面PCM.说明 要清楚线面的垂直关系,线面角的定义,通过数据特点,发现解题捷径.309. 在空间四边形ABCP中,PAPC,PBBC,ACBC.PA、PB与平面ABC所成角分别为30和45。(1)直线PC与AB能否垂直?证明你的结论;(2)若点P到平面ABC的距离为h,求点P到直线AB的距离.解析:主要考查直线与直线、直线与平面的位置关系的综合应用及线面角,点面间距离等概念应用,空间想象力及推理能力.解 (1)AB与PC不能垂直,证
8、明如下:假设PCAB,作PH平面ABC于H,则HC是PC在平面ABC的射影,HCAB,PA、PB在平面ABC的射影分别为HB、HA,PBBC,PAPC.BHBC,AHACACBC,平行四边形ACBH为矩形.HCAB,ACBH为正方形.HBHAPH平面ACBH.PHBPHA.PBHPAH,且PB,PA与平面ABC所成角分别为PBH,PAH.由已知PBH45,PAH30,与PBHPAH矛盾.PC不垂直于AB.(2)由已知有PHh,PBH45BHPHh.PAH30,HAh.矩形ACBH中,AB2h.作HEAB于E,HEh.PH平面ACBH,HEAB,由三垂线定理有PEAB,PE是点P到AB的距离.在
9、RtPHE中,PEh.即点P到AB距离为h.评析:此题属开放型命题,处理此类问题的方法是先假设结论成立,然后“执果索因”,作推理分析,导出矛盾的就否定结论(反证法),导不出矛盾的,就说明与条件相容,可采用演绎法进行推理,此题(1)属于反证法.310. 平面内有一个半圆,直径为AB,过A作SA平面,在半圆上任取一点M,连SM、SB,且N、H分别是A在SM、SB上的射影.(1)求证:NHSB.(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?解析:此题主要考查直线与直线,直线与平面的垂直关系及论证,空间想象力.解 (1)连AM,BM.
10、AB为已知圆的直径,如图所示.AMBM,SA平面,MB,SAMB.AMSAA,BM平面SAM.AN平面SAM,BMAN.ANSM于N,BMSMM,AN平面SMB.AHSB于H,且NH是AH在平面SMB的射影NHSB.(2)由(1)知,SA平面AMB,BM平面SAM.AN平面SMB.SBAH且SBHN.SB平面ANH.图中共有4个线面垂直关系(3)SA平面AMB,SAB、SAM均为直角三角形.BM平面SAM,BMA,BMS均为直角三角形.AN平面SMB.ANS、ANM、ANH均为直角三角形.SB平面AHN. SHA、BHA、SHN均为直角三角形综上所述,图中共有10个直角三角形.(4)由SA平面
11、AMB知:SAAM,SAAB,SABM;由BM平面SAM知:BMAM,BMSM,BMAN;由AN平面SMB知:ANSM,ANSB,ANNH;SB平面AHN知:SBAH,SBHN;综上所述,图中有11对互相垂直的直线.311. 如图,在棱长为a的正方体AC1中,M是CC1的中点,点E在AD上,且AEAD,F在AB上,且AFAB,求点B到平面MEF的距离.解法一:设AC与BD交于O点,EF与AC交于R点,由于EFBD所以将B点到面MEF的距离转化为O点到面MEF的距离,面MRC面MEF,而MR是交线,所以作OHMR,即OH面MEF,OH即为所求.OHMRORMC,OH.解法二:考察三棱锥BMEF,
12、由VB-MEFVM-BEF可得h.点评 求点面的距离一般有三种方法:利用垂直面;转化为线面距离再用垂直面;当垂足位置不易确定时,可考虑利用体积法求距离.312. 正方体ABCDA1B1C1D1的棱长为a,求A1C1和平面AB1C间的距离.解法1 如图所示,A1C1平面AB1C,又平面BB1DD1平面AB1C.故若过O1作O1EOB1于E,则OE1平面AB1C,O1E为所求的距离由O1EOB1O1B1OO1,可得:O1E解法2:转化为求C1到平面AB1C的距离,也就是求三棱锥C1AB1C的高h.由 VV,可得ha.解法3 因平面AB1C平面C1DA1,它们间的距离即为所求,连BD1,分别交B1O
13、、DO1与F、G(图中未画出)。易证BD1垂直于上述两个平面,故FG长即为所求,易求得FG.点评 (1)求线面距离的先决条件是线面平行,而求线面距离的常用方法是把它们转化为求点面之间的距离,有时也可转化为求面面距离,从本题的解法也可悟出求异面直线之间的距离的思路.313.已知:CD,EA,EB,求证:CDAB.314.求证:两条平行线和同一条平面所成的角相等.已知:ab,aA1,bB1,1、2分别是a、b与所成的角.如图,求证:12.证:在a、b上分别取点A、B.如图,且AA1BB1,连结AB和A1B1.AA1BB1四边形AA1B1B是平行四边形.ABA1B1又A1B1 AB. 设AA2于A2
14、,BB2于B2,则AA2BB2在RtAA1A2与中 AA2BB2,AA1BB1RtAA1A2RtBB1B2AA1A2BB1B2即 12.315.经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.已知:ABC,P,PBAPBC,PQ,Q,如图.求证:QBAQBC证:PRAB于R,PSBC于S.则:PRBPSB90.PBPB.PBRPBSRtPRBRtPSBPRPS点Q是点P在平面上的射影.QRQS又QRAB,QSBCABQCBQ316. 如图,E、F分别是正方体的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正
15、方体的面上的射影可能是 (要求:把可能的图的序号都填上)解 四边形BFD1E在正方体的一对平行面上的投影图形相同,在上、下底面上,E、F的射影在棱的中点,四边形的投影图形为,在左右侧面上,E、F的连线垂直侧面,从而四边形的投影图形为,在前后侧面上四边形投影图形也为.故应填.317. 如图,A1B1C1ABC是直三棱柱,BCA90,点D1,F1分别是A1B1,A1C1的中点,若BCCACC1,则BD1与AF1所成角的余弦值是( )A.B.C. D.解 连D1F1,则D1F1A1C1,又BCCA,所以BD1在平面ACC1A1内的射影为CF1,设AC2a,则BCCC12a.取BC的中点E,连EF1,
16、则EFBD1.cos1cosEF1C,cos2cosAF1C, coscos1cos2,应选A.318. (1)如果三棱锥SABC的底面是不等边三角形,侧面与底面所成的角都相等,且顶点S在底面的射影O在ABC内,那么O是ABC的( )A.垂心 B.重心 C.外心 D.内心(2)设P是ABC所在平面外一点,若PA,PB,PC与平面所成的角都相等,那么P在平面内的射影是ABC的( )A.内心 B.外心 C.垂心 D.重心解 (1)利用三垂线定理和三角形全等可证明O到ABC的三边的距离相等,因而O是ABC的内心,因此选D.(2)如图所示,作PO平面于O,连OA、OB、OC,那么PAO、PBO、PCO
17、分别是PA、PB、PC与平面所成的角,且已知它们都相等.RtPAORtPBORtPCO.OAOBOC应选B.说明 三角形的内心、外心、垂心、旁心、重心,它们的定义和性质必须掌握.319. 已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC平面ABCD,且GC2,求点B到平面EFG的距离.解析:注意到直线BD平面EFG,根据直线和平面的距离在BO中点O的距离等于B到平面EFG的距离.解 连结AC、BD,设交于O,E,F分别是AB、AD的中点.EFBDBD平面EFG,设EFACM.则M为OA的中点.又AB4 AC4,MOAC,MCAC3GC平面ABCDGCCA,GCEF又EFAC,
18、GCACC.EF平面GCM.过O作OHGM于H,则OHEF.又OHGM故OH平面EFG.在RtGCM中,GM.又OHGM.sinGMCsinHMOOHB点到平面GEF的距离为说明 本题解法甚多,学习两面垂直及简单几何体后,可用两面垂直的性质求解或者用“等体积法”求解.320. 已知两条异面直线a,b所成的角为,它们的公垂线段AA1的长度为d,在直线a、b上分别取点E、F,设A1Em,AFn.求证:EF解 过A作aa.AA1a, A1AaAA1b,abAA1A垂直a、b所确定的平面.aa a、a能确定平面,在内作EHA1A,交a于H.aa,A1AME为平行四边形.A1AEHd,AHA1EmA1A
19、 EH.FH, EHFH.在RtFHE中,EFaa a与b的夹角为.即HAF,此时AHm,AFn.由余弦定理得 FH2m2+n2-2mncosEF当F(或E)在A(或A1)的另一侧时,同理可得EF综上所述,EF321. 如图,ABCD和ABEF均为平行四边形,M为对角线AC上的一点,N为对角线FB上的一点,且有AMFNACBF,求证:MN平面CBE.解析:欲证MN平面CBE,当然还是需要证明MN平行于平面CBE内的一条直线才行.题目上所给的是线段成比例的关系,因此本题必须通过三角形相似,由比例关系的变通,才能达到“线线平行”到“线面平行”的转化.证:连AN并延长交BE的延长线于P. BEAF,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 基础 题库
限制150内