2022年云南省高考数学(理科)真题(Word档含答案).docx
《2022年云南省高考数学(理科)真题(Word档含答案).docx》由会员分享,可在线阅读,更多相关《2022年云南省高考数学(理科)真题(Word档含答案).docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年普通高等学校招生全国统一考试(云南卷)理科数学注意事项:1答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则( )A B C D2某社区通过公益讲座以普
2、及社区居民的垃圾分类知识为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A讲座前问卷答题的正确率的中位数小于B讲座后问卷答题的正确率的平均数大于C讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D讲座后问卷答题的正确率的极差大于讲座前正确率的极差3设全集,集合,则( )A B C D4如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A8 B12 C16 D205函数在区间的图像大致为( )A BC D6当时,函数取得最大值,则( )A B C
3、 D17在长方体中,已知与平面和平面所成的角均为,则( )A BAB与平面所成的角为C D与平面所成的角为8沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,“会圆术”给出的弧长的近似值s的计算公式:当时,( )A B C D9甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和若,则( )A B C D10椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称若直线的斜率之积为,则C的离心率为( )A B C D11设函数在区间恰有三个极值点、两个零点,则的取值范围是( )A B
4、 C D 12已知,则( )A B C D二、填空题:本题共4小题,每小题5分,共20分。13设向量,的夹角的余弦值为,且,则_14若双曲线的渐近线与圆相切,则_15从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为_16已知中,点D在边BC上,当取得最小值时,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)记为数列的前n项和已知(1)证明:是等差数列;(2)若成等比数列,求的最小值18(12分)在四棱锥中,底面(1)证明:;(2)求PD与平面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 云南省 高考 数学 理科 Word 答案
限制150内