12第3课时勾股定理的逆定理.ppt
《12第3课时勾股定理的逆定理.ppt》由会员分享,可在线阅读,更多相关《12第3课时勾股定理的逆定理.ppt(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2 直角三角形的性质和判定()第1章 直角三角形 优优 翼翼 课课 件件 导入新课讲授新课当堂练习课堂小结学练优八年级数学下(XJ)教学课件第3课时 勾股定理的逆定理学习目标1.掌握勾股定理的逆定理及勾股数.(重点)2.能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)3.能够运用勾股定理的逆定理解决问题(难点)导入新课导入新课B CA 问题1 勾股定理的内容是什么?如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.bca问题2 求以线段a、b为直角边的直角三角形的斜边c的长:a3,b4;a2.5,b6;a4,b7.5.c=5c=
2、6.5c=8.5复习引入思考 以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?同学们你们知道古埃及人用什么方法得到直角的吗?(1)(2)(3)(4)(5)(6)(7)(8)(13)(12)(11)(10)(9)打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中最大的角便是直角.情景引入思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?大禹治水相传,我国古代的大禹在治水时也用了类似的方法确定直角.讲授新课讲授新课勾股定理的逆
3、定理一下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,15,17.问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?是下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,15,17.问题2 这三组数在数量关系上有什么相同点?5,12,13满足52+122=132,7,24,25满足72+242=252,8,15,17满足82+152=172.问题3 古埃及人用来画直角的三边满足这个等式吗?因为32+42=52,所以满足.a2+b2=c2我觉得这个猜想不准确,因为测量结果可能有误差.我也觉得猜想不严谨,
4、前面我们只取了几组数据,不能由部分代表整体.问题3 据此你有什么猜想呢?由上面几个例子,我们猜想:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.ABC ABC?C是直角ABC是直角三角形ABCa b c 已知:如图,ABC的三边长a,b,c,满足a2+b2=c2 求证:ABC是直角三角形构造两直角边分别为a,b的RtABC证一证:证明:作RtABC,使C=90,AC=b,BC=a,ABC ABC(SSS),C=C=90 ,即ABC是直角三角形.则ACaBbc勾股定理的逆定理:如果三角形的三边长a、b、c满足 a2+b2=c2,那么这个三角形是直角三角形.ACBa
5、bc 勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形,最长边所对的角为直角.特别说明:归纳总结 例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a=15 ,b=8 ,c=17;解:(1)152+82=289,172=289,152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且C是直角.(2)a=13,b=14 ,c=15.(2)132+142=365,152=225,132+142152,不符合勾股定理的逆定理,这个三角形不是直角三角形.根据勾股定理的
6、逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.归纳【变式题1】若ABC的三边a,b,c满足 a:b:c=3:4:5,试判断ABC的形状.解:设a=3k,b=4k,c=5k(k0),因为(3k)2+(4k)2=25k2,(5k)2=25k2,所以(3k)2+(4k)2=(5k)2,所以ABC是直角三角形,且C是直角.已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果三角形的三边比中有两个相同的数,那么该三角形还是等腰三角形.归纳(2)若ABC的三边 a,b,c 满足a2+b2+c2+5
7、0=6a+8b+10c.试判断ABC的形状.解:a2+b2+c2+50=6a+8b+10c,a26a+9+b28b+16+c210c+25=0.即(a3)+(b4)+(c5)=0.a=3,b=4,c=5,即 a2+b2=c2.ABC是直角三角形.例2 如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE CB,试判断AF与EF的位置关系,并说明理由 解:AFEF.理由如下:设正方形的边长为4a,则ECa,BE3a,CFDF2a.在RtABE中,得AE2AB2BE216a29a225a2.在RtCEF中,得EF2CE2CF2a24a25a2.在RtADF中,得AF2AD2DF216a
8、24a220a2.在AEF中,AE2EF2AF2,AEF为直角三角形,且AE为斜边AFE90,即AFEF.练一练1.下列各组线段中,能构成直角三角形的是()A2,3,4 B3,4,6 C5,12,13 D4,6,7 C2.一个三角形的三边长分别是3,4,5,则这个三角形最长边上的高是 ()A4 B3 C2.5 D2.4D3.若ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则ABC是_.等腰三角形或直角三角形如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.勾股数二概念学习常见勾股数:3,4,5;5,12,
9、13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.勾股数拓展性质:一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.下列各组数是勾股数的是 ()A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132A 方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.练一练12勾股定理的逆定理的应用三例3 如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12 课时 勾股定理 逆定理
限制150内