3-分形理论及其应用解析.ppt
《3-分形理论及其应用解析.ppt》由会员分享,可在线阅读,更多相关《3-分形理论及其应用解析.ppt(74页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、神经网络课系列讲座神经网络课系列讲座分分形形(fractal)合肥工业大学合肥工业大学合肥工业大学合肥工业大学 图像信息处理研究室图像信息处理研究室图像信息处理研究室图像信息处理研究室 Tel:2901393Tel:2901393 地址:逸夫楼地址:逸夫楼地址:逸夫楼地址:逸夫楼709709Email:Email:http:/ 莹莹分形展厅(国内外分形作品)(国内外分形作品)见山见水墨韵纹身火凤凰的诞生火凤凰的诞生over主要内容主要内容分形的产生背景?分形的产生背景?谁是分形理论的创始人?谁是分形理论的创始人?什么是分形?特征?什么是分形?特征?分形可以应用于哪些领域?分形可以应用于哪些领域
2、?合肥工业大学合肥工业大学合肥工业大学合肥工业大学 图像信息处理研究室图像信息处理研究室图像信息处理研究室图像信息处理研究室 Tel:2901393Tel:2901393地址:逸夫楼地址:逸夫楼地址:逸夫楼地址:逸夫楼709709Email:Email:http:/ Koch 雪花雪花Sierpinski 三角形三角形如果你是个有心人,你一定会发现在自然界如果你是个有心人,你一定会发现在自然界中,有许多景物和都在某种程度上存在这种自相中,有许多景物和都在某种程度上存在这种自相似特性,即它们中的一个部分和它的整体或者其似特性,即它们中的一个部分和它的整体或者其它部分都十分形似。它部分都十分形似。
3、其实,远远不止这些。从心脏的跳动、其实,远远不止这些。从心脏的跳动、变幻莫测的天气到股票的起落等许多现象变幻莫测的天气到股票的起落等许多现象都具有分形特性。这正是研究分形的意义都具有分形特性。这正是研究分形的意义所在。所在。标度不变性标度不变性scaleinvariance指在分形上任选一局部区域,对它进行放大,指在分形上任选一局部区域,对它进行放大,这是得到的放大图又会显出原图的形态特性。这是得到的放大图又会显出原图的形态特性。因此,对于分形,不论将其放大或缩小,它的因此,对于分形,不论将其放大或缩小,它的形态、复杂程度、不规则性等各种特性均不会形态、复杂程度、不规则性等各种特性均不会发生变
4、化,所以标度不变性又称为伸缩不变性。发生变化,所以标度不变性又称为伸缩不变性。分形植物分形植物Mandelbrot集集 分形维数维数是几何学和空间理论的基本概念。例如一维维数是几何学和空间理论的基本概念。例如一维的直线,二维的平面,三维的普通空间,都是人的直线,二维的平面,三维的普通空间,都是人们熟知的。但如果想知道雪花、云彩、山脉、树们熟知的。但如果想知道雪花、云彩、山脉、树枝以及烟圈等等复杂自然结构的维数是多少,用枝以及烟圈等等复杂自然结构的维数是多少,用传统的数学是难以回答的,至多是定性的描述。传统的数学是难以回答的,至多是定性的描述。而分形理论则给出定量的分析,即可用分维(分而分形理论
5、则给出定量的分析,即可用分维(分形维数、分数维)加以表征。它不是通常欧氏维形维数、分数维)加以表征。它不是通常欧氏维数的简单扩充,而是赋予了许多崭新的内涵。数的简单扩充,而是赋予了许多崭新的内涵。你是否听说过世界上存在你是否听说过世界上存在2.8126维的物体?维的物体?是的!是的!尽管听起来似乎比较荒诞,但这是事实。尽管听起来似乎比较荒诞,但这是事实。在这个概念的基础上才有分形学的发展。在这个概念的基础上才有分形学的发展。让我们先作一个类比。让我们先作一个类比。牛顿的运动学定律可以使人们预测运动物体的运牛顿的运动学定律可以使人们预测运动物体的运动情况。但是,当运动物体的速度接近光速时,动情况
6、。但是,当运动物体的速度接近光速时,这个定理就变得极不准确。这个定理就变得极不准确。于是,在于是,在1900初,爱因斯坦发明了相对论。这个初,爱因斯坦发明了相对论。这个成果发展了牛顿定律。如果你去检验相对论,你成果发展了牛顿定律。如果你去检验相对论,你会发现,在低速的情况下,相对论的结果等同于会发现,在低速的情况下,相对论的结果等同于牛顿定律。牛顿定律。那么,这和分维有什么联系呢?那么,这和分维有什么联系呢?像相对论发展了传统力学一样,分维是对传统维像相对论发展了传统力学一样,分维是对传统维数概念的进一步发展。它并不和你所了解的分维数概念的进一步发展。它并不和你所了解的分维知识相冲突,而是一种
7、发展!知识相冲突,而是一种发展!一般情况下,分维是一个分数。它反映了一个一般情况下,分维是一个分数。它反映了一个分形体的不规则程度,分形维数越大,则分形体分形体的不规则程度,分形维数越大,则分形体越不规则。越不规则。这里我们介绍比较常用的三种分形维数:这里我们介绍比较常用的三种分形维数:相似维数相似维数 hausdorffhausdorff 维数维数 盒子维数盒子维数相似维数(相似维数(SimilarityDimension):):如果某图形是由把全体缩小为如果某图形是由把全体缩小为1 1a a的的b b个相似图形构成的,个相似图形构成的,那么相似维数那么相似维数DsDs可以由下式给出可以由下
8、式给出:例如,对于例如,对于例如,对于例如,对于kochkochkochkoch曲线,可以分成四个部分,每个部分都为原曲线,可以分成四个部分,每个部分都为原曲线,可以分成四个部分,每个部分都为原曲线,可以分成四个部分,每个部分都为原来的来的来的来的1/31/31/31/3大小,而每一部分又可以同样的细分,则它的相似大小,而每一部分又可以同样的细分,则它的相似大小,而每一部分又可以同样的细分,则它的相似大小,而每一部分又可以同样的细分,则它的相似维数维数维数维数Koch曲线曲线Hausdorff维数维数设有一条长度为设有一条长度为L的线段,若用一长的线段,若用一长r 的的“尺尺”作为单位去量它,
9、量作为单位去量它,量度的结果是度的结果是N,我们就说这条线段有,我们就说这条线段有N尺。显然尺。显然N的数值与所用尺的大的数值与所用尺的大小有关,它们之间具有下列关系:小有关,它们之间具有下列关系:同理,若测量的是一块面积为同理,若测量的是一块面积为同理,若测量的是一块面积为同理,若测量的是一块面积为A A的平面,这时用边长为的平面,这时用边长为的平面,这时用边长为的平面,这时用边长为 r 的单位小正的单位小正的单位小正的单位小正方形去测量它,有下式成立方形去测量它,有下式成立方形去测量它,有下式成立方形去测量它,有下式成立:同样,可以用半径为同样,可以用半径为r的小球来填满一块体积的小球来填
10、满一块体积V球体球体,所需小球的数目,所需小球的数目比例于:比例于:对于任何严格有确定维数的集合体,若用与它具有相对于任何严格有确定维数的集合体,若用与它具有相同维数的同维数的“尺尺”去量度,则可以得到一确定的数值去量度,则可以得到一确定的数值N,若若用低于它维数的用低于它维数的“尺尺”去量它,结果为无穷大;若用高于去量它,结果为无穷大;若用高于它维数的它维数的“尺尺”去量它,结果为零。其数学表达式为去量它,结果为零。其数学表达式为对上式两边取自然对数,可得:对上式两边取自然对数,可得:式中的式中的DH就称为就称为Hausdorff维数,它可以是整数,也可以维数,它可以是整数,也可以是分数。它
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理论 及其 应用 解析
限制150内