建筑结构抗震第六章单层厂房抗震设计.ppt
《建筑结构抗震第六章单层厂房抗震设计.ppt》由会员分享,可在线阅读,更多相关《建筑结构抗震第六章单层厂房抗震设计.ppt(98页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章第六章:单层厂房抗震设计单层厂房抗震设计第六章第六章:单层厂房抗震设计单层厂房抗震设计6.1 6.1 震害分析震害分析6.2 6.2 抗震设计抗震设计6.3 6.3 抗震构造措施和连接的计算要求抗震构造措施和连接的计算要求6.4 6.4 计算实例计算实例6.1 6.1 震害分析震害分析单层混凝土柱厂房的震害单层混凝土柱厂房的震害总体较轻主要是维护结构的破坏维护墙:起承受和传递水平地震力的作用刚度和质量分布对厂房的动力反应很大影响其布置不合理是造成厂房危害的重要原因墙体和柱拉结不良而在地震时发生墙面大片倒塌的现象营口中板厂营口中板厂天窗震害天窗震害型天窗是厂房抗震的薄弱部位,在6度区就有震
2、害的实例主要表现主要表现:支撑杆件失稳弯曲支撑与天窗立柱连接节点被拉脱天窗立柱根部开裂或折断等因为型天窗位于厂房最高的部位柱的震害柱的震害:从整体上看从整体上看7度区一般无震害8度和9度区出现裂缝10度区少数的倒塌因为其在设计中考虑了水平力的作用柱的局部震害柱的局部震害:上柱柱身变截面处酥裂或折断柱的局部震害柱的局部震害:柱顶与屋面梁的连接处由于受力复杂易发生剪裂、压酥、拉裂或锚筋拔出、钢筋弯折等震害由于高振型的影响,高低跨两个屋盖产生相反方向的运动,使中柱柱肩产生竖向拉裂柱的局部震害柱的局部震害:下柱下部出现横向裂缝或折断,后者会造成倒塌等严重后果柱间支撑产生压屈位于8度区的营口中板厂轧钢车
3、间,其柱子主要是双肢管柱,局部为工字形钢筋混凝土柱。地震后,位于标高9米圈梁以上的纵墙几乎通长倒塌,吊车梁附近管柱有破坏,个别柱的柱根有细裂缝。营口中板厂营口中板厂砖柱厂房砖柱厂房:抗震性能远不如钢筋混凝土厂房屋盖的震害现象有屋盖的震害现象有:重屋盖的天窗两侧竖向支撑或结点拉脱,或钢杆件被压屈屋面的瓦下滑和掉落;冷摊瓦屋面的木屋架沿厂房纵向向一侧倾斜;木屋架及其气楼间的竖向交叉支撑或结点拉脱,或木杆件被拉断;砖柱的震害现象有砖柱的震害现象有:内部独立砖柱在底部发生水平裂缝;柱顶混凝土垫块底面出现水平裂缝,少数发生错位;高低跨砖柱上柱水平折断,或是支承低跨屋架的柱肩产生竖向裂缝墙体的震害主要有墙
4、体的震害主要有:山墙外倾,檩条由墙顶拔出,严重时山墙尖向外倾倒,端开间屋面局部塌落;外纵墙在窗台高度处出现细微水平裂缝,较严重时水平折断,并常伴有壁柱砖块局部压碎崩落,更严重时整个厂房横向倾倒厂房受纵向水平地震作用时的破坏程度重于受横向地震作用时的破坏程度厂房受纵向水平地震作用时的破坏程度重于受横向地震作用时的破坏程度主要破坏形式主要破坏形式:1.天窗两侧竖向支撑斜杆拉断,节点破坏,天窗架沿厂房纵向倾斜,甚至倒下砸塌屋盖2.屋面板与屋架的连接焊缝剪断,屋面板从屋架上滑脱坠地。屋盖的纵向地震力是通过屋面板焊缝从屋架中部向屋架的两端传递的,屋架两端的剪力最大。因此,屋架的震害主要是端头混凝土酥裂掉
5、角、支撑大型屋面板的支墩折断、端节间上弦剪断等3.在设有柱间支撑的跨间,由于其刚度大,屋架端头与屋面板边肋连接点处的剪力最为集中,往往首先被剪坏;这使得纵向地震力的传递转移到内肋,导致屋架上弦受到过大的纵向地震力而破坏。当纵向地震力主要由支撑传递时,若支撑数量不足或布置不当,会造成支撑的失稳,引起屋面的破坏或屋盖的倒塌。另外,柱根处也会发生沿厂房纵向的水平断裂4.纵向围护砖墙出现斜裂缝6.2.1 6.2.1 设计原则设计原则结构的布置和选型结构的布置和选型:平面布置和抗侧力结构形式围护墙的布置天窗架和屋架的选型柱的选型6.2 6.2 抗震设计抗震设计平面布置和抗侧力结构形式平面布置和抗侧力结构
6、形式:结构布置应合理合理(平面复杂)否则设防震缝厂房纵横跨交接处,对大柱网厂房等可不设柱间支撑的厂房缝宽采用100150mm其他情况缝宽采用5090mm竖向:减少刚度突变各跨的高度应尽可能相同两个主厂房之间的过渡跨至少应有一侧采用防震缝与主厂房脱开平面对称避免显著扭转震动单厂平面布置平面布置和抗侧力结构形式平面布置和抗侧力结构形式:厂房的横向抗侧力体系厂房的横向抗侧力体系常为屋盖横梁(屋架)与柱铰接的排架形式厂房的纵向抗侧力体系厂房的纵向抗侧力体系纵向柱列排架排架柱间柱间支撑支撑纵墙纵墙形成围护墙的布置:围护墙的布置:均匀、对称厂房的一端设缝而不能布置横墙时,另一端宜采用轻质挂板山墙多跨厂房的
7、砌体围护墙外贴式嵌砌式宜不宜边柱列(嵌砌有墙)中柱列(一般只有柱间支撑)差悬殊刚度相边跨屋盖因扭转效应过大而发生震害导致厂房内部有砌体隔墙嵌砌于柱间不宜与柱脱开或与柱构造处理柔性连接的方法适用避免局部刚度过大或形成短柱而引起震害围护墙的布置:围护墙的布置:单层钢筋混凝土柱厂房的围护墙轻质墙板或钢筋混凝土大型墙板外侧柱距为12m不等高厂房的高跨封墙和纵横向厂房交接处的悬墙轻质墙板8、9度宜应宜应天窗天窗削弱屋盖的整体刚度薄弱环节天窗在纵向的起始部位应尽可能远离伸缩缝区段(厂房单元)的端部8度和9度时宜从厂房单元端部第三柱间开始设置天窗架天窗架和屋架的选型:天窗架天窗架和屋架的选型:天窗架天窗架突
8、出屋面较小的避风型天窗架抗震性能好的结构宜采用应优先选用宜采用钢结构68度杆件截面为矩形的钢筋混凝土天窗架可采用有条件时或9度区最好不要采用突出屋面的形天窗,而宜采用重心低的下沉式天窗天窗的侧板、端壁板与屋面板轻质板材大型屋面板不宜采用宜采用突出屋面天窗架钢筋混凝土刚结构下沉式天窗天窗架和屋架屋架的选型:屋架屋架预应力混凝土钢筋混凝土屋架宜采用钢屋架68度地震区可采用8度区III、IV类场地9度区屋架跨度大于24m时宜采用跨度不大于15m钢筋混凝土屋面梁可采用有突出屋面天窗架预应力混凝土钢筋混凝土空腹屋架不宜采用天窗架和屋架屋架的选型:柱距为12m预应力混凝土托架(梁)当采用钢屋架时亦可采用钢
9、托架(梁)有突出屋面天窗架的屋盖预应力混凝土或钢筋混凝土空腹屋架砖柱厂房的天窗不应通至厂房单元的端开间,且天窗不应采用端砖壁承重预应力混凝土屋架可采用不宜采用柱的选型:柱的选型:在8、9度地震区矩形工字形斜腹杆双肢柱管柱平腹杆双肢柱矩形工字形斜腹杆双肢柱薄壁工字形柱腹板开孔柱预制腹板的工字形柱平腹杆双肢柱管柱不宜采用宜采用柱底至室内地坪以上500mm范围内阶形柱的上柱矩形截面宜采用增强这些部位的抗剪能力回顾:6.1 6.1 震害分析震害分析6.2 6.2 抗震设计抗震设计6.3 6.3 抗震构造措施和连接的计算要求抗震构造措施和连接的计算要求6.2.2 6.2.2 横向抗震计算横向抗震计算1.
10、1.计算简图计算简图单层厂房单层厂房空间结构平面排架等高排架不等高排架单自由度体系多自由度体系等高排架可简化为单自由度体系等高排架可简化为单自由度体系:1.1.计算简图计算简图-平面排架平面排架计算自振周期时的质量集中:计算自振周期时的质量集中:G=1.0G屋盖+0.5G雪+0.5G积灰+0.5G吊车梁+0.25G柱+0.25G纵墙+1.0G檐墙计算地震作用时的质量集中计算地震作用时的质量集中:G=1.0G屋盖+0.5G雪+0.5G积灰+0.75G吊车梁+0.5G柱+0.5G纵墙+1.0G檐墙1.1.计算简图计算简图-平面排架平面排架不等高排架,可按不同高度处屋盖的数量和屋盖之间的连接方式,不
11、等高排架,可按不同高度处屋盖的数量和屋盖之间的连接方式,简化成多自由度体系简化成多自由度体系:二质点体系二质点体系屋盖位于两个不同高度处简化1.1.计算简图计算简图-平面排架平面排架不等高排架,可按不同高度处屋盖的数量和屋盖之间的连接方式,不等高排架,可按不同高度处屋盖的数量和屋盖之间的连接方式,简化成多自由度体系简化成多自由度体系:三质点体系三质点体系三个高度处有屋盖简化计算自振周期时的质量集中计算自振周期时的质量集中:G1=1.0G低跨屋盖+0.5G低跨雪+0.5G低跨积灰+0.5G低跨吊车梁+0.25G低跨边柱+0.25G低跨纵墙+1.0G高跨吊车梁(中柱)+0.25G中柱下柱+0.5G
12、中柱上柱+0.5G高跨封墙+1.0G低跨檐墙G2=1.0G高跨屋盖+0.5G高跨吊车梁(中柱)+0.25G高跨边柱+0.25G高跨外纵墙+0.5G中柱上柱+0.5G高跨封墙+0.5G高跨雪+0.5G高跨积灰+1.0G高跨檐墙计算地震作用时的质量集中:计算地震作用时的质量集中:G1=1.0G低跨屋盖+0.75G低跨吊车梁+0.5G低跨边柱+0.5G低跨纵墙+1.0G高跨吊车梁(中柱)+0.5G中柱下柱+0.5G中柱上柱+0.5G高跨封墙+0.5G低跨雪+0.5G低跨积灰+1.0G低跨檐墙G2=1.0G高跨屋盖+0.75G高跨吊车梁(边跨)+0.5G高跨边柱+0.5G高跨外纵墙+0.5G中柱上柱+
13、0.5G高跨封墙+0.5G高跨雪+0.5G高跨积灰+1.0G高跨檐墙1.1.计算简图计算简图-平面排架平面排架二质点体系二质点体系1.1.计算简图计算简图确定厂房的地震作用时,对设有桥式吊车的厂房,还应考虑吊车确定厂房的地震作用时,对设有桥式吊车的厂房,还应考虑吊车桥架的重力荷载桥架的重力荷载一般是把某跨吊车桥架的重力荷载集中于该跨任一柱吊车梁的顶面标高处。如两跨不等高厂房均设有吊车,则在确定厂房地震作用时可按四个集中质点考虑(下图)吊车桥架处理吊车桥架处理 为质点:为质点:仅在计算地震作用时才能采用对单自由度体系,自振周期对单自由度体系,自振周期T的计算公式为:的计算公式为:2.2.自振周期
14、的计算自振周期的计算质量对多自由度体系,可用能量法计算基本自振周期对多自由度体系,可用能量法计算基本自振周期T1,公式为:,公式为:刚度第i质点的质量第i质点的重量全部Gi(i=1,.,n)沿水平方向的作用下第i质点的侧移自由度数2.2.自振周期的计算自振周期的计算抗震规范规定,按平面排架计算厂房的横向地震作用时,排架的基本自抗震规范规定,按平面排架计算厂房的横向地震作用时,排架的基本自振周期应考虑纵墙及屋架与柱连接的固结作用振周期应考虑纵墙及屋架与柱连接的固结作用。按上述公式算出的自振周期还应进行如下调整:由钢筋混凝土屋架或钢屋架与钢筋混凝土柱组成的排架有纵墙无纵墙80%周期计算值90%周期
15、计算值由钢筋混凝土屋架或钢屋架与砖柱组成的排架90%周期计算值3.3.排架地震作用的计算排架地震作用的计算-底部剪力法:底部剪力法:质点质点i的水平地震作用标准值为的水平地震作用标准值为:体系的自由度数目相应于基本周期T1的地震影响系数等效重力荷载代表值第i质点的重力荷载代表值第i质点至柱底的距离单质点体系全部重力荷载代表值多质点体系全部重力荷载代表值的85%(二质点体系)(也可取全部重力荷载代表值的95%)求出各质点的水平地震作用后,就可用结构力学方法求出相应的排架内力缺点:很难反映高振型的影响3.3.排架地震作用的计算排架地震作用的计算对较为复杂的厂房(例如高低跨高度相差较大的厂房)底部剪
16、力法不能反映高振型的影响,误差较大高低跨相交处柱牛腿的水平拉力振型分解法底部剪力法无法实现此拉力的计算引起计算简图相同振型分解法:振型分解法:各振型各质点处的水平地震作用各振型的地震内力总的地震内力3.3.排架地震作用的计算排架地震作用的计算-振型分解法振型分解法 :1)计算平面排架各振型的自振周期、振型幅值和振型参与系数)计算平面排架各振型的自振周期、振型幅值和振型参与系数对二质点的高低跨排架,用柔度法计算较方便,相应的振型分解对二质点的高低跨排架,用柔度法计算较方便,相应的振型分解 法的计算步骤如下:法的计算步骤如下:x1、x2:二质点水平位移坐标m1、m2:二质点质量,1、2:第一、二振
17、型的圆频率 取12,则第一、二自振周期分别为:记第i振型第j质点的幅值 为 (i,j=1,2),则有第一、二振型参与系数3.3.排架地震作用的计算排架地震作用的计算-振型分解法振型分解法 :2)计计算各振型的地震作用和地震内力算各振型的地震作用和地震内力第第i振型第振型第j质点的地震作用为质点的地震作用为,i,j=1,2即,即,然后按然后按结结构力学方法求出各振型的地震内力。构力学方法求出各振型的地震内力。3.3.排架地震作用的计算排架地震作用的计算-振型分解法振型分解法 :3)计算最终的地震内力)计算最终的地震内力某一内力S在第一振型的地震作用下的值某一内力S在第二振型的地震作用下的值为S2
18、该地震内力 的最终值4.4.考虑空间工作和扭转影响的内力调整考虑空间工作和扭转影响的内力调整7度和8度;厂房单元屋盖长度与总跨度之比小于8或厂房总跨度大于12m;山墙的厚度不小于240mm,开洞所占的水平截面积不超过总面积的50%,并与屋盖系统有良好的连接;柱顶高度不大于15m。当符合下列要求时,可考虑空间工作和扭转影响:当符合下列要求时,可考虑空间工作和扭转影响:为考虑空间作用和扭转影响,排架柱的弯矩和剪力应分别乘以相应的为考虑空间作用和扭转影响,排架柱的弯矩和剪力应分别乘以相应的调整系数调整系数,调整系数的值可按下表采用:,调整系数的值可按下表采用:屋屋 盖盖山墙山墙屋盖长度屋盖长度(m)
19、303642485460667278849096钢筋钢筋混凝混凝土无土无檩屋檩屋盖盖两端两端山墙山墙等高等高厂房厂房0.750.750.750.80.80.80.850.850.850.9不等不等高厂高厂房房0.850.850.850.90.90.90.950.950.951.0一端山墙一端山墙1.051.151.21.251.31.31.31.31.351.351.351.35钢筋钢筋混凝混凝土土有有檩屋檩屋盖盖两端两端山墙山墙等高等高厂房厂房0.80.850.90.950.951.01.01.051.051.1不等不等高厂高厂房房0.850.90.951.01.01.051.051.11.
20、11.15一端山墙一端山墙1.01.051.11.11.151.151.151.21.21.21.251.254.4.考虑空间工作和扭转影响的内力调整考虑空间工作和扭转影响的内力调整当排架按第二主振型振动时,高跨横梁和低跨横梁的运动方向相反,当排架按第二主振型振动时,高跨横梁和低跨横梁的运动方向相反,使高低跨交接处上柱的两端之间产生了较大的相对位移使高低跨交接处上柱的两端之间产生了较大的相对位移(如图)(如图)5.5.高低跨交接处上柱地震作用效应的调整高低跨交接处上柱地震作用效应的调整上柱的长度一般较短,侧移刚度较大,故此处产生的地震内力也较大高低跨交接处的钢筋混凝土柱支承低跨屋盖牛腿以上各截
21、面,按底部剪力法求得的地震弯矩和剪力应乘以增大系数,其值可按下式采用:5.5.高低跨交接处上柱地震作用效应的调整高低跨交接处上柱地震作用效应的调整按底部剪力法计算时,由于主要反映了第一主振型的情况,算得的高低跨交接处上柱的地震内力偏小较多不等高厂房高低跨交接处的空间工作影响系数,可按下表采用高跨的跨数计算跨数集中于交接处一侧各低跨屋盖标高处的总重力荷载代表值集中于高跨柱顶标高处的总重力荷载代表值仅一侧有低跨两侧均有低跨总跨数总跨数与高跨跨数之和屋盖屋盖山墙山墙屋盖长度屋盖长度(m)3642485460667278849096钢筋混凝钢筋混凝土无檩屋土无檩屋盖盖两端山墙两端山墙0.70.76 0
22、.82 0.88 0.941.01.06 1.06 1.06 1.06一端山墙一端山墙1.25钢筋混凝钢筋混凝土有檩屋土有檩屋盖盖两端山墙两端山墙0.91.01.051.11.11.15 1.15 1.151.21.2一端山墙一端山墙1.05高低跨交接处钢筋混凝土上柱空间工作影响系数高低跨交接处钢筋混凝土上柱空间工作影响系数 5.5.高低跨交接处上柱地震作用效应的调整高低跨交接处上柱地震作用效应的调整计算步骤:计算步骤:(2)计算该吊车重力荷载对一根柱子产生的水平地震作用。(1)计算一台吊车对一根柱子产生的最大重力荷载Gc。1)当桥架不作为一个质点时,该水平地震作用可近似按下式计算:2)当桥架
23、作为一个质点时,该处的水平地震作用可直接由底部剪力法求出。6.6.吊车桥架引起的地震作用效应增大系数吊车桥架引起的地震作用效应增大系数吊车桥架是一个较大的移动质量,在地震时往往引起厂房的强烈局部振动。因此,应考虑吊车桥架自重引起的地震作用效应,并乘以效应增大系数吊车桥架引起的并作用于一根柱吊车梁顶面处的水平地震作用相应于排架基本周期T1的地震影响系数吊车梁顶面高度吊车梁所在柱的高度(3)按结构力学求地震作用效应(内力)。(4)将地震作用效应乘以下表所示的增大系数屋盖类型屋盖类型山墙山墙边柱边柱高低跨柱高低跨柱其他中柱其他中柱钢筋混凝土无钢筋混凝土无檩屋盖檩屋盖两端山墙两端山墙2.02.53.0
24、一端山墙一端山墙1.52.02.5钢筋混凝土有钢筋混凝土有檩屋盖檩屋盖两端山墙两端山墙1.52.02.5一端山墙一端山墙1.52.02.06.6.吊车桥架引起的地震作用效应增大系数吊车桥架引起的地震作用效应增大系数7.7.排架内力组合和构件强度验算排架内力组合和构件强度验算1)内力组合)内力组合地震作用效应组合地震作用效应组合是指与地震作用同时存在的其他重力荷载代表值引起的荷载效应的不利组合不考虑风荷载效应吊车横向水平制动力引起的内力竖向地震作用S=GCGGE+EhCEhEhk重力荷载代表值的分项系数水平地震作用的分项系数重力荷载代表值效应系数水平地震作用的效应系数重力荷载代表值水平地震作用
25、2)柱的截面抗震验算)柱的截面抗震验算截面的作用效应相应的承载力设计值承载力抗震调整系数7.7.排架内力组合和构件强度验算排架内力组合和构件强度验算排架柱一般按偏心受压构件验算其截面承载力。验算的一般表达式为8度和9度时,高大山墙的抗风柱应进行平面外的截面抗震验算应按下式确定牛腿的水平受拉钢筋截应按下式确定牛腿的水平受拉钢筋截面面积面面积:7.7.排架内力组合和构件强度验算排架内力组合和构件强度验算3)支承低跨屋盖牛腿的水平受拉钢筋抗震验算)支承低跨屋盖牛腿的水平受拉钢筋抗震验算柱牛腿面上重力荷载代表值产生的压力设计值牛腿面上重力作用点至下柱近侧边缘的距离,当小于0.3h0时采用0.3h0牛腿
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 建筑结构 抗震 第六 单层 厂房 设计
限制150内