数学史简介剖析.ppt
《数学史简介剖析.ppt》由会员分享,可在线阅读,更多相关《数学史简介剖析.ppt(98页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学史简介数学是什么?如果:你想当经济学家,药学家,化学家,数学是统计分析工具 你想当物理学家,数学是微积分 你想当计算机专家,数学是算法语言 你想当建筑学家,数学是几何三视图 你想当数学家,数学就是你的世界若果你不幸什么都当不了,小心数学就是你的克星!第一章:史前数学史v自然现象:天文,地理v生产力的发展v私有思想,私有制v人类智慧的发展v神的旨意v史前数学主要是对数的认识v这种认识跨越几万年,直到18世纪“匹配”导致自然数的产生v族长或者酋长的工作v古希腊荷马史诗的传说:波吕斐摩斯被刺瞎后的牧羊生活v罗素(英国数学家,18721970)说“不知要经过多少年,人类才发现一对锦鸡和两天同含一个
2、数字二。”抽象对于古人实在是太难了记数法v艰难的过程v限制中国数学深入的瓶颈v印度阿拉伯数字中国数学记数法:进位制:v史上曾经有过二进制,五进制,十进制,十二进制,十六进制,六十进制。v汉字一二三四五六七八九十对十进制的贡献v长期运用后留下二进制十进制v据推测五进制十进制与人的手指个数有关现代澳大利亚托列斯峡群岛上一些部落仍用二进制:一=乌拉勃,二=阿柯扎他们把三表为:阿柯扎乌拉勃那么:阿柯扎阿柯扎?阿柯扎阿柯扎乌拉勃?阿柯扎阿柯扎阿柯扎=?“0”不是印度人或阿拉伯人的发明v“0”太重要了,一无所有为零v零是自然数v据考证“0”首次出现在柬埔寨苏门答腊的碑文上v进位制是人类共同财产位值制:v1
3、1236635中的3代表多少?v拉普拉斯(法国数学家,17491827)说 “用十个记号来表示一切数,每个数不但有绝对的值,而且还有位置的值,这种出自印度的巧妙方法,是一个深远而重要的思想。今天看来是如此简单,以至于我们忽视了它的真正伟绩,但恰恰是它的简单性对一切计算都提供了极大的方便,才使我们的算术在一切有用的发明中列在首位。而当我们想到它竟然逃过了古代最伟大的阿基米德和阿波罗尼斯的天才思想的关注时,我们更感到这成就的伟大。”自然数与整数的诞生分数与小数的诞生小数点的诞生是后来很久以后的事了,公元635年,3.1415927记成三丈一尺四寸一分五厘九毫二秒七忽公元1593年由德国克拉维斯给出
4、,现代记法诞生。负数的诞生:中国西汉出现(元前200年),用赤筹表示。欧洲15才世纪出现四大文明古国:中国v公元前二十七世纪黄帝时代就开始了数学研究v数学发达至少有4000年v成就:分数、正负数、勾股定理、圆周率、剩余定理、杨辉三角等等v由于中国文字的限制,数学理论的表叙以及推导都极为困难,导致数学理论在中国发展受到制约v中国长期重文轻理导致数学以及科学的落后v政治原因,农业大国四大文明古国:印度v印度有印度有35003500至至40004000年年v最大成就是印度数码,十进制最大成就是印度数码,十进制v五世纪后五世纪后“零零”的符号在印度出现的符号在印度出现v与占星术,宗教,农业关系密切与占
5、星术,宗教,农业关系密切v方法与结果用树皮树叶记载,大多失散方法与结果用树皮树叶记载,大多失散v用晦涩的诗歌表述,难于理解用晦涩的诗歌表述,难于理解v知道勾股定理,三角学并计算出知道勾股定理,三角学并计算出四大文明古国:埃及v光辉灿烂的文明v影响较大的:金字塔,纸草书,古文字v尼罗河贯穿全景v治理尼罗河河水泛滥,他们研究天文发现:河水上涨与清晨天狼星升起的日子一样,间隔365天,确立现代公历的基础v重新测定河岸的土地,几何特别发达v没有上升为理论,直到公元前4世纪后,希腊人入侵为止四大文明古国:巴比伦v数学泥板的发现v上面有:帐单,收据,票据,大量数学用表,达到古代数学的最高的理论水平v184
6、7年开始解读数学泥板,1920年才有详尽的注解,巴比伦文明被世人了解v60位进制,面积体积的计算,方程组的求解,级数求和,勾股数,二次方程四大文明古国与河流v中国:黄河,长江v埃及:尼罗河v巴比伦:底格里斯河,幼发拉底河v印度:恒河,印度河其他发达古国v希腊从公元前希腊从公元前6 6世纪至公元世纪至公元4 4世纪,达世纪,达10001000年年v阿拉伯数学发达仅限于阿拉伯数学发达仅限于8 8至至1313世纪,有世纪,有500500年年v欧洲国家数学发达是在欧洲国家数学发达是在1010世纪以后的事世纪以后的事v日本则迟至日本则迟至1717世纪以后。世纪以后。无理数的出现与第一次数学危机v无理数就
7、像岔路口的路标,沿不同方向均可发现它的存在。v中国沿一个方向来到它的面前竟然视而不见v古希腊沿另外一个方向来到它的面前却有意躲避中国与无理数v九章算术第四章说“若开之不尽者,为不可开,当以面命之”v我们不知“当以面命之”所云为何,但可以确定,那时中国人一来到这个路标下了。v刘徽在计算平方根的近似值时离无限不循环已近在咫尺,但他说“不足言之”竟然放弃了。v“重算法轻算理”是中国古代的风气使中国与无理数失之交臂,令人惋惜。古希腊与无理数v学派众多,最有名的是毕达哥拉斯学派(元前580元前500)柏拉图学派(元前430元前349)v毕达哥拉斯学派是兼有政治,宗教,哲学的团体,“万物皆数”(读三声)为
8、其哲学基础和理论出发点。v毕氏提出了著名的毕达哥拉斯定理。伟大的毕达哥拉斯v毕达哥拉斯:古希腊数学家,公元前580至公元前497,青年的他游历许多地方,并到埃及印度留学。他深入民间收集点点滴滴的数学知识,最后学有所成并形成一个学派,史称毕达哥拉斯学派,对数学,天文学有巨大贡献。毕达哥拉斯学派认为任何数都可以表达成二个整数的商,即任意数都是可以度量的。万物皆数v他们把线段的长度看作是线段锁包含的原子数目,因而任意两条线段长度之比就是它们各自原子数之比。v由此观点出发,毕氏研究了音乐美术天文地理。v应用在数学上,从埃及的黄金三角形(各边之比为3:4:5)发现5:12:13,8:15:17,这就是中
9、国说的“勾股定理”v它们只相信直角三角形的三边之比都应该是整数比v毕氏的学生、学者希帕索斯发现直角三角形直角边都取1,则斜边就不可度量,与毕氏理论产生矛盾v毕氏也发现不可通约量的存在v学派进入两难境地,学派内部所有成员立誓保密,因而无理数有个诨号“不可说”(Alogon)v希帕索斯说了,学派就此开始瓦解。v学派解决矛盾的方法是把希帕索斯抛进大海。希帕索斯的发现引发了第一次数学危机。大约公元前世纪,不可通约量的发现 毕达哥拉斯悖论 无理数:古代数学家前进的方向v欧道克斯(希腊,元前408前355)数与量的分离:连续与离散。v存在与否困扰科学家哲学家v在迷雾中度过漫长而黑暗的中世纪,迎来“文艺复兴
10、”的繁荣时期(公元14001600)无理数终于被人们慢慢接受v疑惑仍然存在“即乐意又心存疑虑”v直到19世纪实数理论的建立才完全消除谁推开了虚数的“大门”v12世纪,印度数学家婆什伽罗说:“正数的平方是正数,负数的平方是正数,因此一个正数的平方根是两个,一个正数,一个负数。负数没有平方根”。v他太肯定了!“负数没有平方根”遏制了后人的探索欲望。400年来,数学家都采取了回避态度。v1545年卡丹的 让人莫名其妙(后面专门谈他)大师的困惑与无知v卡丹(意大利数学家,医生,算命先生15011576)到达大门,不敢敲门。v欧拉彻底否认:他说“一切形如 的数学式都是不可能有的,这类数 纯属虚构”v伟大
11、的笛卡儿(法国数学家,15961650)创立直角坐标系,给出理论武器。v200年后即18世纪,挪威的测绘员威赛尔,巴黎的会计师阿尔干完美解释。从一维到二维v600年的艰辛v众多杰出数学家束手无策,历史罕见v思维定势所限:现实中没有,传统数学中它不合理v条件所限:不能从一维跳到二维,笛卡儿还未出生,平面坐标不知为何物,费尔玛无人认识,点的坐标,有序对是天方夜谈,解析几何还在数学的摇篮中睡觉第二章:几何学代数学的发展v先有几何还是先有代数?v一个领域的繁荣昌盛不外乎下列几个原因:1有重大理论问题出现。2有现实问题急需解决。3出现伟大人物。v代数与几何都有非常辉煌的时光。v代数必讲数论及方程,几何必
12、讲欧几里德德原本。v几何狂飚:突破欧几里德几何,非欧几何。数论与方程:第二次抽象v数的崇拜与禁忌:“1生2,2生3,3生万物”所以1最神圣,7,8为吉祥数。4,13为一些民族的禁忌v中国人崇拜“9”:故宫大门纵横九颗铜星,皇帝九龙袍,九龙壁,“九九归一,侄极而返”v“60”是古巴比伦人与毕达哥拉斯心中的神v数的文化:奇为女,偶为男,“一帆风顺,双喜临门,三阳开泰,四通八达,五彩缤纷,六根清洁,八面玲珑,九霄云外,十全十美”“一波三折,两败俱伤,三长两短,四面楚歌,五内俱焚,六神无主,七上八下,九死一生,十恶不赦”数论与方程:第二次抽象v整除理论:最古老的问题,中国剩余定理v地道的业余数学家费尔
13、玛:从地方官员到数学家,30岁学习数学,既是解析几何的发明者(与笛卡儿同享)又是概率论的开创者(与帕斯卡同享),不同寻常的经历,不可思议,令人感慨万千v费马玛(法国数学家,1601-1665)与数论:看起来简单,作起来难之又难,是数论的魅力所在,使人“衣带渐宽终不悔,为伊消得人憔悴”,始作俑者费尔玛。v现代数论的先驱创始人费尔玛猜想v丢番图(古希腊公元246330)名著算术,代数学之母v算术是费尔玛的枕边之物vv从17世纪到20世纪,历时300多年,直到1994,41岁得英国数学家怀尔斯解决高斯(德国数学家,17771855)与数论v现代数论统一理论的创建者v20岁决定献身数学,最终成为最伟大
14、的数学家之一v1801年结束费尔玛数论,开创纯理论数论研究v追随者:戴德金,狄利克雷,刘维尔,闵可夫斯基,创建:代数数论,解析数论,超越数论,几何数论哥德巴赫猜想与陈景润v1742年,德国哥德巴赫老师发现“大于2的偶数,可以表示为两个素数之和”v求教欧拉:欧拉说“虽然我不能证明它,但我确信它完全正确”v1900年希尔伯特(德国数学家,18621943)把它列为23个世纪难题,称为“皇冠上的明珠”v1966年中国人陈景润(19331996)证明“12”,1973年发表,离摘取明珠咫尺之遥v陈氏定理被誉为“光辉顶点”方程的历史v方程的产生:在中国,在日本,在印度v花拉子模(阿拉伯人,公元78085
15、0)第一次给出未知量,但他称其为“硬币”“东西”“根”v代数“Algebra”源于花氏的书中“还原”一词v古希腊的不定方程,丢番图,费尔玛与不定方程v印度的不定方程,追求全部整数解,他们的 阿耶波多,婆罗摩岌多,婆什伽罗都有著述方程的发展v符号化:从丢番图开始到1589年的韦达v从一元到二元:古希腊数学家海伦的著作,中国九章算术均有记述v海伦:有一正方形知其面积与周长之和为896尺,求其一边v九章算术:今有邑城方不知大小,各开中门。出北门20步有木,出南门14步折而西行1775见木。问邑方几何?符号化的形式一元二次方程的解法v花拉子模的几何解法v中国的“开带从平方法”v古希腊的配方法:公元10
16、0年海伦200年丢番图完成v佛兰西斯韦达(法国数学家,法学家,外交家,国王参谋长,15401603):根与系数的关系一元三次方程的公式解v人们寻找象一元二次方程那样的公式解v当时认为它比圆化方还难v16世纪,意大利的波罗拉学派的弗罗(14651562)得出 的解。但是未公布v30岁的尼科拉方丹纳(意大利布雷西亚青年,15001557)绰号“塔塔利亚”(结巴):给出一元三次方程的公式解数学史上第一次数学竞赛v塔塔利亚解决的问题:v他未公布答案,引来波罗拉学派的愤怒v塔塔利亚与波罗拉决定举行竞赛,塔塔利亚胜出,这是有史记载的第一次数学竞赛塔塔利亚,卡丹,费拉里的恩恩怨怨v卡丹:(雄辩家,博物学家,
17、几何家,代数家,天文学家,星象学家,医学家,外科专家,道学家,语言学家)拜倒在塔塔利亚面前v1539年求教与塔氏,并同意保密,得到手稿v卡丹的仆人费拉里的成就:一元四次方程的解法v1545年卡丹发表大衍术(Ars Magna)公开塔氏费氏成果,引发数学史的第一次公案v事情远未结束:五次以及五次以上的方程呢?初等几何v起源:无意识的几何阶段,埃及金字塔(元前2900),尼罗河岸边的土地界限丈量v几何的发展:经验几何的产生,中国埃及巴比伦印度v论证几何的哲学基础的出现:公理及严谨的逻辑推理,古希腊哲学的发展让严谨深深扎根于心灵深处。数学圣经几何原本(Elements)v欧几里德(希腊数学家,元前3
18、30前275)的几何原本堪称集合论证的光辉典范,影响曾经可比圣经v1607年明朝翻译到中国v在全世界使用至今v原本共13篇,包罗初等几何,初等数论,几何代数v所有初等几何的书都是抄录原本或者是抄录那些抄录原本的书的书几何度量(面积体积)v欧道克斯的变量,绕开无理数使丈量得以进行v多边形的面积:毕氏的直接因数法,欧几里德“转化”法,比如:等底等高的两个三角形面积相同v阿基米德(希腊数学家,元前287前212)对曲边形面积的研究;离微积分咫尺之遥v祖冲之(南北朝政府官员,公元429500):曾经的世界第一,保持1000多年。圆周率的计算思想比圆周率本身还重要,他也靠近了微积分,是中国古代最具现代数
19、学思想的人伟大的阿基米德v意大利西西里岛的叙古拉(当时受希腊统治)是他的故乡,他是当时最伟大的天文学家,力学家,数学家,是人类科学的第一坐高峰,超过高斯牛顿v杠杆与重心理论,流体力学v73岁在叙古拉参加抵御罗马入侵,担任最高军事顾问,研究出大量的武器v元前212被罗马士兵所杀就此完成初等数学内容的创立v17世纪前,数学已是掺天大树v研究不变的量,几何代数是其中心内容v三角,对数,数列已经建立理论v构成现在小学中学学习的数学知识v这时的数学仍有许多困境与迷惑v数学等待更伟大的理论与更伟大的人物第三章:变量数学v数学发展的第三个时期v最具代表性的人物是法国人笛卡儿v笛卡儿是一座高高的山峰,屹立在初
20、等数学的尽头,高等数学的开头,他是分水岭v标志性的概念是变量,它成为数学的中心内容v标志性的工作是微积分的诞生与成熟建议大家阅读的图书v数学哲学张景中著v古今数学思想克莱因著v现代西方哲学之父:笛卡儿v数学思想发展简史袁小明等著数学的天空中群星闪耀v从公元1600年公元1820年数学发展的黄金时代v数学研究变数以及变数之间的关系v运动进入数学,辩证法进入数学v笛卡儿与费尔玛用代数方法解决几何问题,创立解析几何v莱布尼兹(德国数学家,哲学家,物理学家16461716)提出函数的一般概念数学的星空群星闪耀v牛顿(英国物理学家,数学家16421727)与莱布尼兹共同创立微积分的原理v他们及其学生们发
21、展了数学分析为物理学天文学光学提供强有力的工具v成功预言1759年哈雷慧星回归v发展了偏微分方程,概率统计,变分学解析几何v17世纪最重要的成就之一v标志变量时代的开始v可追溯到埃及罗马人的活动:他们在测绘地形时,借助坐标确定位置v希腊人阿波罗尼斯从圆锥曲线导出它的丰富的圆锥曲线几何学(与笛卡儿的非常相似)背景v16世纪欧洲文艺复兴带来的科学,经济的全面发展v天文学力学航海的迫切需要v初等数学已经成熟:伟大人物已经出现:笛卡儿,费尔玛,开普勒,伽利略等等v试验数学的方法,运动的观点要求必须有新的理论方法来研究几何v东方的数学书籍传入西方,引发用代数解决几何问题,改变了西方用几何解决代数问题的观
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学史 简介 剖析
限制150内