第6讲向量的内积与正交化.ppt
《第6讲向量的内积与正交化.ppt》由会员分享,可在线阅读,更多相关《第6讲向量的内积与正交化.ppt(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第6节节 向量的内积与正交化向量的内积与正交化一一 向量的内积、长度及向量间的夹角向量的内积、长度及向量间的夹角定义定义 内积是两个向量之间的一种运算,其结果是一个实数。内积也称作点积点积或点乘点乘,并记作 x y。由于向量又可看作矩阵,借用矩阵记号,向量(列矩阵)x,y 的内积又可写成 (x,y)=xT y。内积具有下列性质(其中 x,y,z 为 n 维向量,k 为实数):(1)(x,y)=(y,x);(2)(kx,y)=k(x,y);(3)(x+y,z)=(x,z)+(y,z);(4)(x,x)0,当且仅当 x=0 时,(x,x)=0。内积还满足施瓦茨施瓦茨(Schwarz)不等式不等式
2、定义:定义向量 的长度长度(范数范数,模模)为向量的长度具有下述性质:(1)非负性:当 x0 时,|x|0;当 x=0 时,|x|=0;(2)齐次性:|k x|=|k|x|;(3)施瓦茨不等式:|(x,y)|x|y|;(4)三角不等式:|x+y|x|+|y|。在二、三维空间中有向量夹角的概念,在更高维的向量空间中,夹角并没有直观的含义。但由施瓦茨不等式,当 x0,y0时,有称该角度为非零向量x与y的夹角夹角。当(x,y)=0时,x与y的夹角为 ,此时称向量x与y正交正交,记为 。由于零向量与任意同维向量的内积为0,所以规定规定零向零向量与任意同维向量正交。量与任意同维向量正交。二二 正交的向量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量 内积 正交
限制150内