几何动点与变换综合性问题-2022年中考数学大题狂练之压轴大题突破培优练(解析版)【江苏专用】.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《几何动点与变换综合性问题-2022年中考数学大题狂练之压轴大题突破培优练(解析版)【江苏专用】.docx》由会员分享,可在线阅读,更多相关《几何动点与变换综合性问题-2022年中考数学大题狂练之压轴大题突破培优练(解析版)【江苏专用】.docx(112页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年中考数学大题狂练之压轴大题突破培优练(江苏专用) 专题7 几何动点与变换综合性问题【真题再现】1(2021江苏南通中考真题)如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,当为等腰三角形时,求的值【答案】(1) (2)DG/CF理由见解析(3) 【解析】【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等再用三角形内角和为 算出 (2)作辅助线BF、AC,先导角证明 是等腰直角三角形、
2、 是等腰直角三角形再证明 、,最后用内错角相等,两直线平行,证得DG/CF(3) 为等腰三角形,要分三种情况讨论:FH=BHBF=FHBF=BH,根据题目具体条件,舍掉了、种,第种用正弦函数定义求出比值即可【详解】(1)解:连接BF,设AF和BE相交于点N 点A关于直线BE的对称点为点F BE是AF的垂直平分线 ,AB=BF 四边形ABCD是正方形 AB=BC, (2) 位置关系:平行理由:连接BF,AC,DG设DC和FG的交点为点M,AF和BE相交于点N由(1)可知, 是等腰直角三角形 四边形ABCD是正方形 是等腰直角三角形 垂直平分AF 在 和 中, 在 和 中, CF/DG(3)为等腰
3、三角形有三种情况:FH=BHBF=FHBF=BH,要分三种情况讨论:当FH=BH时,作 于点M由(1)可知:AB=BF, 四边形ABCD是正方形 设AB=BF=BC=a将绕点B顺时针旋转得到 FH=BH 是等腰三角形, 在 和 中, BM=AE= 当BF=FH时,设FH与BC交点为O 绕点B顺时针旋转得到 由(1)可知: 此时, 与 重合,与题目不符,故舍去当BF=BH时,由(1)可知:AB=BF设AB=BF=a 四边形ABCD是正方形 AB=BC=a BF=BH BF=BH=BC=a而题目中,BC、BH分别为直角三角形BCH的直角边和斜边,不能相等,与题目不符,故舍去故答案为:【点睛】本题考
4、查了三角形内角和定理(三角形内角和为 )、平行线证明(内错角相等,两直线平行)、相似三角形证明(两组对应角分别相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似)、等腰直角三角形三边比例关系()、正弦函数定义式(对边:斜边) 2(2021江苏徐州中考真题)如图1,正方形的边长为4,点在边上(不与重合),连接将线段绕点顺时针旋转90得到,将线段绕点逆时针旋转90得到连接(1)求证:的面积;(2)如图2,的延长线交于点,取的中点,连接,求的取值范围【答案】(1)见详解;见详解;(2)4MN【解析】【分析】(1)过点F作FGAD交AD的延长线于点G,证明,即可得到结论;过点E作EHDA交
5、DA的延长线于点H,证明,结合,可得GD=EH,同理:FG=AH,从而得,进而即可得到结论;(2)过点F作FGAD交AD的延长线于点G,过点E作EHDA交DA的延长线于点H,可得AMD=90,MN=EF,HG= 2AD=8,EH+FG= AD=4,然后求出当点P与点D重合时, EF最大值=,当点P与AD的中点重合时,EF最小值= HG=8,进而即可得到答案【详解】(1)证明:过点F作FGAD交AD的延长线于点G,FPG+PFG=90,FPG+CPD=90,FPG=CPD,又PGF=CDP=90,PC=PF,(AAS),FG=PD,的面积;过点E作EHDA交DA的延长线于点H,EPH+PEH=9
6、0,EPH +BPA=90,PEH =BPA,又PHE=BAP=90,PB=PE,(AAS),EH=PA,由得:FG=PD,EH+FG=PA+PD=AD=CD,由得:,PG=CD,PD+GD= CD= EH+FG,FG+ GD= EH+FG,GD=EH,同理:FG=AH,又AHE=FGD,;(2)过点F作FGAD交AD的延长线于点G,过点E作EHDA交DA的延长线于点H,由(1)得:,HAE=GFD,GFD+GDF=90,HAE+GDF=90,HAE=MAD,GDF=MDA,MAD+MDA=90,AMD=90,点N是EF的中点,MN=EF,EH=DG=AP,AH=FG=PD,HG=AH+DG+
7、AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值=,当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,的取值范围是:4MN【点睛】本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键3(2021江苏宿迁中考真题)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周(1)如图,连接BG、CF,求的值;(2)当正方形AEFG旋转至图位置时,连接CF、BE,分别去CF、BE的中点M、N,连接MN、试探
8、究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积【答案】(1);(2);(3)【解析】【分析】(1)由旋转的性质联想到连接,证明即可求解;(2)由M、N分别是CF、BE的中点,联想到中位线,故想到连接BM并延长使BM=MH,连接FH、EH,则可证即可得到,再由四边形内角和为可得,则可证明,即是等腰直角三角形,最后利用中位线的性质即可求解;(3)Q、N两点因旋转位置发生改变,所以Q、N两点的轨迹是圆,又Q、N两点分别是BF、BE中点,所以想到取AB的中点O,结合三角形中位线和圆环面积的求解即可解答【详解】解:(
9、1)连接四边形ABCD和四边形AEFG是正方形分别平分即且都是等腰直角三角形(2)连接BM并延长使BM=MH,连接FH、EH是CF的中点又在四边形BEFC中又即即又四边形ABCD和四边形AEFG是正方形三角形BEH是等腰直角三角形M、N分别是BH、BE的中点(3)取AB的中点O,连接OQ、ON,连接AF在中,O、Q分别是AB、BF的中点同理可得所以QN扫过的面积是以O为圆心,和为半径的圆环的面积【点睛】本题考察旋转的性质、三角形相似、三角形全等、正方形的性质、中位线的性质与应用和动点问题,属于几何综合题,难度较大解题的关键是通过相关图形的性质做出辅助线4(2021江苏南京中考真题)在几何体表面
10、上,蚂蚁怎样爬行路径最短?(1)如图,圆锥的母线长为,B为母线的中点,点A在底面圆周上,的长为在图所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号)(2)图中的几何体由底面半径相同的圆锥和圆柱组成O是圆锥的顶点,点A在圆柱的底面圆周上设圆锥的母线长为l,圆柱的高为h蚂蚁从点A爬行到点O的最短路径的长为_(用含l,h的代数式表示)设的长为a,点B在母线上,圆柱的侧面展开图如图所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路【答案】(1)作图如图所示;(2)h +l;见解析【解析】【分析】(1)根据两点之间线段最短,即可得到最
11、短路径;连接OA,AC,可以利用弧长与母线长求出AOC,进而证明出OAC是等边三角形,利用三角函数即可求解;(2)由于圆锥底面圆周上的任意一点到圆锥顶点的距离都等于母线长,因此只要蚂蚁从点A爬到圆锥底面圆周上的路径最短即可,因此顺着圆柱侧面的高爬行,所以得出最短路径长即为圆柱的高h加上圆锥的母线长l;如图,根据已知条件,设出线段GC的长后,即可用它分别表示出OE、BE、GE、AF,进一步可以表示出BG、GA,根据B、G、A三点共线,在RtABH中利用勾股定理建立方程即可求出GC的长,最后依次代入前面线段表达式中即可求出最短路径长【详解】解:(1)如图所示,线段AB即为蚂蚁从点A爬行到点B的最短
12、路径;设AOC=n,圆锥的母线长为, 的长为,;连接OA、CA,是等边三角形,B为母线的中点,(2) 蚂蚁从点A爬行到点O的最短路径为:先沿着过A点且垂直于地面的直线爬到圆柱的上底面圆周上,再沿圆锥母线爬到顶点O上,因此,最短路径长为h+l 蚂蚁从点A爬行到点B的最短路径的示意图如下图所示,线段AB即为其最短路径(G点为蚂蚁在圆柱上底面圆周上经过的点,图中两个C点为图形展开前图中的C点);求最短路径的长的思路如下:如图,连接OG,并过G点作GFAD,垂足为F,由题可知,GF=h, OB=b,由的长为a,得展开后的线段AD=a,设线段GC的长为x,则的弧长也为x,由母线长为l,可求出COG,作B
13、EOG,垂足为E,因为OB=b,可由三角函数求出OE和BE,从而得到GE,利用勾股定理表示出BG,接着由FD=CG=x,得到AF=a-x,利用勾股定理可以求出AG,将AF+BE即得到AH,将EG+GF即得到HB,因为两点之间线段最短,A、G、B三点共线,利用勾股定理可以得到:,进而得到关于x的方程,即可解出x,将x的值回代到BG和AG中,求出它们的和即可得到最短路径的长【点睛】本题考查的是曲面上的最短路径问题,涉及到圆锥和圆柱以及它们的组合体上的最短路径问题,解题过程涉及到“两点之间、线段最短”以及勾股定理和三角函数等知识,本题为开放性试题,答案形式不唯一,对学生的空间想象能力以及图形的感知力
14、要求较高,蕴含了数形结合等思想方法5(2021江苏连云港中考真题)在数学兴趣小组活动中,小亮进行数学探究活动(1)是边长为3的等边三角形,E是边上的一点,且,小亮以为边作等边三角形,如图1,求的长;(2)是边长为3的等边三角形,E是边上的一个动点,小亮以为边作等边三角形,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)是边长为3的等边三角形,M是高上的一个动点,小亮以为边作等边三角形,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形的边长为3,E是边上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形,其中点F、G都在直线上,如图4
15、,当点E到达点B时,点F、G、H与点B重合则点H所经过的路径长为_,点G所经过的路径长为_【答案】(1)1;(2)3;(3);(4);【解析】【分析】(1)由、是等边三角形, ,可证即可;(2)连接,、是等边三角形,可证,可得,又点在处时,点在A处时,点与重合可得点运动的路径的长;(3)取中点,连接,由、是等边三角形,可证,可得又点在处时,点在处时,点与重合可求点所经过的路径的长;(4)连接CG ,AC ,OB,由CGA=90,点G在以AC中点为圆心,AC为直径的上运动,由四边形ABCD为正方形,BC为边长,设OC=x,由勾股定理即,可求,点G所经过的路径长为长=,点H所经过的路径长为的长【详
16、解】解:(1)、是等边三角形,;(2)连接,、是等边三角形,又点在处时,点在A处时,点与重合点运动的路径的长;(3)取中点,连接,、是等边三角形,又点在处时,点在处时,点与重合,点所经过的路径的长;(4)连接CG ,AC ,OB,CGA=90,点G在以AC中点为圆心,AC为直径的上运动,四边形ABCD为正方形,BC为边长,COB=90,设OC=x,由勾股定理即,点G所经过的路径长为长=,点H在以BC中点为圆心,BC长为直径的弧上运动,点H所经过的路径长为的长度,点G运动圆周的四分之一,点H也运动圆周的四分一,点H所经过的路径长为的长=,故答案为;【点睛本题考查等边三角形的性质,三角形全等判定与
17、性质,勾股定理,90圆周角所对弦是直径,圆的弧长公式,掌握等边三角形的性质,三角形全等判定与性质,勾股定理,90圆周角所对弦是直径,圆的弧长公式是解题关键6(2020年淮安第26题)初步尝试(1)如图,在三角形纸片ABC中,ACB90,将ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AMBM;思考说理(2)如图,在三角形纸片ABC中,ACBC6,AB10,将ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;拓展延伸(3)如图,在三角形纸片ABC中,AB9,BC6,ACB2A,将ABC沿过顶点C的直线折叠,使点B落在边AC上的点B处,折痕为CM求线段AC的长;若点O是
18、边AC的中点,点P为线段OB上的一个动点,将APM沿PM折叠得到APM,点A的对应点为点A,AM与CP交于点F,求PFMF的取值范围【分析】(1)利用平行线的方向的定理解决问题即可(2)利用相似三角形的性质求出BM,AM即可(3)证明BCMBAC,推出BCAB=BMBC=CMAC,由此即可解决问题证明PFAMFC,推出PFFM=PACM,因为CM5,推出PFFM=PA5即可解决问题【解析】(1)如图中,ABC折叠,使点B与点C重合,折痕为MN,MN垂直平分线段BC,CNBN,MNBACB90,MNAC,CNBN,AMBM故答案为AMBM(2)如图中,CACB6,AB,由题意MN垂直平分线段BC
19、,BMCM,BMCB,BCMA,BB,BCMBAC,BCBA=BMBC,610=BM6,BM=185,AMABBM10-185=325,AMBM=325185=169(3)如图中,由折叠的性质可知,CBCB6,BCMACM,ACB2A,BCMA,BB,BCMBAC,BCAB=BMBC=CMAC69=BM6,BM4,AMCM5,69=5AC,AC=152如图1中,AAMCF,PFAMFC,PAPA,PFAMFC,PFFM=PACM,CM5,PFFM=PA5,点P在线段OB上运动,OAOC=154,AB=152-6=32,32PA154,310PFFM347(2020年宿迁第27题)【感知】如图,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏专用 几何 变换 综合性 问题 2022 年中 数学 大题狂练 压轴 突破 培优练 解析 江苏 专用
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-79286991.html
限制150内