中考数学一轮复习——第七讲二元一次方程组.doc
《中考数学一轮复习——第七讲二元一次方程组.doc》由会员分享,可在线阅读,更多相关《中考数学一轮复习——第七讲二元一次方程组.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七讲:二元一次方程组知识梳理知识点1. 二元一次方程组的有关概念重点:掌握二元一次方程组的有关概念难点:二元一次方程组的有关概念的理解二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值因此,任何一个二元一次方程都有无数多个解由这些解组成的集合,叫做这个二元一次方程的解集二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组一般地,能使二元一次方程组的两个方程左右两
2、边的值都相等的两个未知数的值,叫做二元一次方程组的解例1.方程是二元一次方程,则的取值为( )A、0 B、1 C、1 D、2解题思路:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程选B例2.若二元一次方程有正整数解,则的取值应为( )A、正奇数 B、正偶数 C、正奇数或正偶数 D、0解题思路: 由,都是正整数,选A例3.已知二元一次方程组 的解是,则a+b的值为_。解题思路:根据方程组的定义,把x=2,y=1代入方程组,转化为关于a、b的方程组,解出a与b的值,问题就解决了,也可应用整体思想,直接求出a+b的值。 解:把x=2,y=1代入原方程组, 得 (1)+(2)
3、得3(a+b)=9,a+b=3练习1.已知x、y满足方程组,则x-y的值为 。2.请写出一个以x,y为未知数的二元一次方程组,且同时满足下列两个条件:由两个二元一次方程组成;方程的解为,这样的方程组可以是-。答案1. x-y=1 2. 答案不惟一。如:;等等。知识点2.二元一次方程组的解法重点:掌握代入消元法、加减消元法难点:熟练解二元一次方程组来源:学科网 代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法 加减消元法:两个二
4、元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法例1 解方程组解题思路:因为y的系数绝对值是1,所以用代入消元法解较简单。 解:由,得y=2x-8 把代入,得3x+2(2x-8)=5 3x+4x-16=5 x=3 把x=3代入,得y=23-8=-2 方程组的解为 x=3 y=-2 点评:解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度。来源:Zxxk.Com例2解方程组解题思路:方程化为,再用加减法解,答案: 练习1.解方程组:2. 已知关于、的二元一次方
5、程组的解满足二元一次方程,求的值。答案1. 2. 知识点3二元一次方程组的应用重点:掌握列二元一次方程组的解应用题的步骤难点:找准题目中等量关系对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多列方程组解应用问题有以下几个步骤: (1)选定几个未知数; (2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组; (3)解方程组,得到方程组的解;来源:学。科。网 (4)检验求得未知数的值是否符合题意,符合题意即为应用题的解来源:学.科.网例1、某山区有23名中、小学生因贫困失学需要捐助, 资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元,某校学生积极
6、捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:初一年级初二年级初三年级捐款数额(元)400042007400捐助贫困学生(名)23捐助贫困小学生人数(名)43 (1)求a、b的值; (2)初三年级学生的捐款解决了其余贫困中小学生的学习费用, 请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中。(不需写出计算过程)解题思路:本题存在两个等量关系,分别是捐助2名中学生的学习费用+4 名小学生的学习费用4000和捐助3名中学生的学习费用3名小学生的学习费用4200。 解:(1)根据题意,得 解这个方程组,得 (2)初三年级学习捐助贫困中学生人数为4(名),
7、捐助贫困小学生人数为7(名)。例2、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?解:设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得: 解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时
8、13000辆。练习:为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”,该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒,该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?分析:依甲、乙原料的量分别为20000盒和30000盒列方程解:设生产奥运会标志x套,生产奥运会吉祥物y套,根据题意得-得5x=10000 x=2000把x=2000代入得,5y=12000,y=2400答:该厂能生产奥运会标志2
9、000套, 奥运会吉祥物2400套.最新考题由二元一次方程或二元一次方程组的解去求方程或方程组中的字母系数,是大部分省市中考的热点,主要以填空题或选择题的题型出现,它既考查了方程或方程解的定义,又考查了二元一次方程组的解法,列二元一次方程组解简单的应用题,是每年中考中几乎不可缺少的题目,主要根据当前各种形式进行命题,预计2010年中考对二元一次方程的意义、解二元一次方程组、利用方程或方程组的解求方程或方程组中的字母系数仍然以填空、选择的形式出现,对一次方程组的应用的考查以解答题居多,难度不大。考查目标一、确定二元一次方程组中的字母系数或字母系数的范围例1、(2009年四川省内江市)若关于,的方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 一轮 复习 第七 二元 一次 方程组
限制150内