2013年中考数学复习专题讲座七归纳猜想型问题(一).doc
《2013年中考数学复习专题讲座七归纳猜想型问题(一).doc》由会员分享,可在线阅读,更多相关《2013年中考数学复习专题讲座七归纳猜想型问题(一).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013年中考数学复习专题讲座七:归纳猜想型问题(一)一、中考专题诠释归纳猜想型问题在中考中越来越被命题者所注重。这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。二、解题策略和解法精讲归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊一般特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生
2、事物的一般过程。相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。三、中考考点精讲考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。例1 (
3、2012沈阳)有一组多项式:a+b2,a2b4,a3+b6,a4b8,请观察它们的构成规律,用你发现的规律写出第10个多项式为 考点:多项式。810360 专题:规律型。分析:首先观察归纳,可得规律:第n个多项式为:an+(1)n+1b2n,然后将n=10代入,即可求得答案解答:解:第1个多项式为:a1+b21,第2个多项式为:a2b22,第3个多项式为:a3+b23,第4个多项式为:a4b24,第n个多项式为:an+(1)n+1b2n,第10个多项式为:a10b20故答案为:a10b20点评:此题考查的知识点是多项式,此题难度不大,注意找到规律第n个多项式为:an+(1)n+1b2n是解此题
4、的关键例2 (2012珠海)观察下列等式:12231=13221,13341=14331,23352=25332,34473=37443,62286=68226,以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:52 = 25; 396=693 (2)设这类等式左边两位数的十位数字为a,个位数字为b,且2a+b9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明考点:规律型:数字的变化类。810360 专题:规律型。分析:(1)观察规律,左边,两位数所
5、乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;右边,三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可解答:解:(1)5+2=7,左边的三位数是275,右边的三位数是572,52275=57225,左边的三位数是396,左边的两位数是63,右边的两位数是36,63369=69336;故答案为:275,572;63,36(2)左边两位数的十位数字为a,个位数字为b,左边的两位数是10a+b,三位数是100b+10(a+b)+
6、a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,一般规律的式子为:(10a+b)100b+10(a+b)+a=100a+10(a+b)+b(10b+a),证明:左边=(10a+b)100b+10(a+b)+a,=(10a+b)(100b+10a+10b+a),=(10a+b)(110b+11a),=11(10a+b)(10b+a),右边=100a+10(a+b)+b(10b+a),=(100a+10a+10b+b)(10b+a),=(110a+11b)(10b+a),=11(10a+b)(10b+a),左边=右边,所以“数字对称等式”一般规律的式子为:(10a+b)100b
7、+10(a+b)+a=100a+10(a+b)+b(10b+a)点评:本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键考点二:猜想图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。其中,以图形为载体的数字规律最为常见。猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。例3 1(2012重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第个图形一共有2个五角星,第个图形一共有8个五角星,第个图形一共有18个五角星,则第个图形中五角星的个数为
8、()A50B64C68D72考点:规律型:图形的变化类。810360 分析:先根据题意求找出其中的规律,即可求出第个图形中五角星的个数解答:解:第个图形一共有2个五角星,第个图形一共有:2+(32)=8个五角星,第个图形一共有8+(52)=18个五角星,第n个图形一共有:12+32+52+72+2(2n1)=21+3+5+(2n1),=1+(2n1)n=2n2,则第(6)个图形一共有:262=72个五角星;故选D点评:本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键例4 (2012绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯
9、之间有3棵树,相邻的树与树,树与灯间的距离是10cm,如图,第一棵树左边5cm处有一个路牌,则从此路牌起向右510m550m之间树与灯的排列顺序是()ABCD考点:规律型:图形的变化类。810360 分析:根据题意可得,第一个灯的里程数为10米,第二个灯的里程数为50,第三个灯的里程数为90米第n个灯的里程数为10+40(n1)=40n30米,从而可计算出530米处哪个里程数是灯,也就得出了答案解答:解:根据题意得:第一个灯的里程数为10米,第二个灯的里程数为50,第三个灯的里程数为90米第n个灯的里程数为10+40(n1)=(40n30)米,故当n=14时候,40n30=530米处是灯,则5
10、10米、520米、540米处均是树,故应该是树、树、灯、树,故选B点评:本题考查了图形的变化类问题,解决本题的关键是从原图中找到规律,并利用规律解决问题例5 (2012荆门)已知:顺次连接矩形各边的中点,得到一个菱形,如图;再顺次连接菱形各边的中点,得到一个新的矩形,如图;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图;如此反复操作下去,则第2012个图形中直角三角形的个数有()A8048个B4024个C2012个D1066个考点:规律型:图形的变化类。810360 专题:规律型。分析:写出前几个图形中的直角三角形的个数,并找出规律,当n为奇数时,三角形的个数是2(n+1),当n为偶数
11、时,三角形的个数是2n,根据此规律求解即可解答:解:第1个图形,有4个直角三角形,第2个图形,有4个直角三角形,第3个图形,有8个直角三角形,第4个图形,有8个直角三角形,依次类推,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n个,所以,第2012个图形中直角三角形的个数是22012=4024故选B点评:本题主要考查了图形的变化,根据前几个图形的三角形的个数,观察出与序号的关系式解题的关键考点三:猜想坐标变化例6 (2012德州)如图,在一单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,都是斜边在x轴上、斜边长分别为2,4,6,的等腰直角三角形若A1A
12、2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2012的坐标为 考点:等腰直角三角形;点的坐标。810360 专题:规律型。分析:由于2012是4的倍数,故A1A4;A5A8;每4个为一组,可见,A2012在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答解答:解:2012是4的倍数,A1A4;A5A8;每4个为一组,A2012在x轴上方,横坐标为2,A4、A8、A12的纵坐标分别为2,4,6,A12的纵坐标为2012=1006故答案为(2,1006)点评:本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答例7 (2
13、012鸡西)如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2012的坐标为 考点:正方形的性质;坐标与图形性质。810360 专题:规律型。分析:首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2012的坐标解答:解:正方形OABC边长为1,OB=,正方形OBB1C1是正方形OABC的对角线OB为边,OB1=2,B1点坐标为(0,2),同理可知OB2=2,B2点坐标为(
14、2,2),同理可知OB3=4,B3点坐标为(4,0),B4点坐标为(4,4),B5点坐标为(0,8),B6(8,8),B7(16,0)B8(16,16),B9(0,16),由规律可以发现,每经过9次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,20129=2235,B2012的纵横坐标符号与点B4的相同,纵横坐标都是负值,B2012的坐标为(21006,21006)故答案为(21006,21006)点评:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过9次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍
15、,此题难度较大四、中考真题演练一、选择题1(2012烟台)一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A3B4C5D6考点:规律型:图形的变化类。810360 专题:规律型。分析:答案中断去的菱形个数均为较小的正整数,由所示的图形规律画出完整的装饰链,可得断去部分的小菱形的个数解答:解:如图所示,断去部分的小菱形的个数为5,故选C点评:考查图形的变化规律;按照图形的变化规律得到完整的装饰链是解决本题的关键2(2012铜仁地区)如图,第个图形中一共有1个平行四边形,第个图形中一共有5个平行四边形,第个图形中一共有11个平行四边形,则第个图形中平行四
16、边形的个数是()A 54B110C19D109考点:规律型:图形的变化类。810360 专题:规律型。分析:得到第n个图形在1的基础上如何增加2的倍数个平行四边形即可解答:解:第个图形中有1个平行四边形;第个图形中有1+4=5个平行四边形;第个图形中有1+4+6=11个平行四边形;第个图形中有1+4+6+8=19个平行四边形;第n个图形中有1+2(2+3+4+n)个平行四边形;第个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D点评:考查图形的变化规律;得到第n个图形中平行四边形的个数在第个图形中平行四边形的个数1的基础上增加多少个2是解决本题的关键4(201
17、2永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是()A0B1C2D3考点:规律型:图形的变化类。810360 分析:因棋子移动了k次后走过的总格数是1+2+3+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解解答:解:因棋子移动了k次后走过的总格数是1+2+3+k=k(k+1),应停在第k(k+1)7p格,这时P是整数,且使0k(k+1)7
18、p6,分别取k=1,2,3,4,5,6,7时,k(k+1)7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7k10,设k=7+t(t=1,2,3)代入可得,k(k+1)7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即:这枚棋子永远不能到达的角的个数是3故选D点评:本题考查理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解5(2012扬州)大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,若m3分裂后,其中有一个奇数是2013,则m的值是()A 43
19、B44C45D46考点:规律型:数字的变化类。810360 专题:规律型。分析:观察规律,分裂成的数都是奇数,且第一个数是底数乘以与底数相邻的前一个数的积再加上1,奇数的个数等于底数,然后找出2013所在的奇数的范围,即可得解解答:解:23=3+5,33=7+9+11,43=13+15+17+19,m3分裂后的第一个数是m(m1)+1,共有m个奇数,45(451)+1=1981,46(461)+1=2071,第2013个奇数是底数为45的数的立方分裂后的一个奇数,m=45故选C点评:本题是对数字变化规律的考查,找出分裂后的第一个奇数与底数的变化规律是解题的关键6(2012盐城)已知整数a1,a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 年中 数学 复习 专题讲座 归纳 猜想 问题
限制150内