2005年高考数学总复习解题思维专题讲座之四-数学思维的.doc
《2005年高考数学总复习解题思维专题讲座之四-数学思维的.doc》由会员分享,可在线阅读,更多相关《2005年高考数学总复习解题思维专题讲座之四-数学思维的.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学驿站 2005年高考数学总复习解题思维专题讲座之四 数学思维的开拓性一、概述数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。“数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。从而培养创新精神和创造能力。在一题多解的训练中,我们要密切注意
2、每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。数学思维的开拓性主要体现在:(1) 一题的多种解法例如 已知复数满足,求的最大值。我们可以考虑用下面几种方法来解决:运用复数的代数形式;运用复数的三角形式;运用复数的几何意义;运用复数模的性质(三角不等式);运用复数的模与共轭复数的关系;(数形结合)运用复数方程表示的几何图形,转化为两圆与有公共点时,的最大值。(2) 一题的多种解释例如,函数式可以有以下几种解释:可以看成自由落体公式可以看成动能公式可以看成热量公式又如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。“1”可以变换为:,等等。1 思维训练实例例1 已知
3、求证:分析1 用比较法。本题只要证为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。证法1 所以 分析2 运用分析法,从所需证明的不等式出发,运用已知的条件、定理和性质等,得出正确的结论。从而证明原结论正确。分析法其本质就是寻找命题成立的充分条件。因此,证明过程必须步步可逆,并注意书写规范。证法2 要证 只需证 xMyd图421O即 因为 所以只需证 即 因为最后的不等式成立,且步步可逆。所以原不等式成立。分析3 运用综合法(综合运用不等式的有关性质以及重要公式、定理(主要是平均值不等式)进行推理、运算,从而达到证明需求证的不等式成立的方法)证法3 即 分析4 三角换元法:由于已
4、知条件为两数平方和等于1的形式,符合三角函数同角关系中的平方关系条件,具有进行三角代换的可能,从而可以把原不等式中的代数运算关系转化为三角函数运算关系,给证明带来方便。证法4 可设 分析5 数形结合法:由于条件可看作是以原点为圆心,半径为1的单位圆,而联系到点到直线距离公式,可得下面证法。证法5 (如图4-2-1)因为直线经过圆的圆心O,所以圆上任意一点到直线的距离都小于或等于圆半径1,即 简评 五种证法都是具有代表性的基本方法,也都是应该掌握的重要方法。除了证法4、证法5的方法有适应条件的限制这种局限外,前三种证法都是好方法。可在具体应用过程中,根据题目的变化的需要适当进行选择。例2 如果求
5、证:成等差数列。分析1 要证,必须有成立才行。此条件应从已知条件中得出。故此得到直接的想法是展开已知条件去寻找转换。证法1 故 ,即 成等差数列。分析2 由于已知条件具有轮换对称特点,此特点的充分利用就是以换元去减少原式中的字母,从而给转换运算带来便利。证法2 设则于是,已知条件可化为:所以成等差数列。分析3 已知条件呈现二次方程判别式的结构特点引人注目,提供了构造一个适合上述条件的二次方程的求解的试探的机会。证法3 当时,由已知条件知即成等差数列。当时,关于的一元二次方程:其判别式故方程有等根,显然1为方程的一个根,从而方程的两根均为1,由韦达定理知 即 成等差数列。简评:证法1是常用方法,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2005 年高 数学 复习 解题 思维 专题讲座
限制150内