高中数学复习专题讲座直线与圆锥曲线问题的处理方法(1.doc
《高中数学复习专题讲座直线与圆锥曲线问题的处理方法(1.doc》由会员分享,可在线阅读,更多相关《高中数学复习专题讲座直线与圆锥曲线问题的处理方法(1.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、题目 高中数学复习专题讲座直线与圆锥曲线问题的处理方法(1)高考要求 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等 突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能 重难点归纳 1 直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法 2 当直线与圆锥曲线相交时 涉及弦长问题,常用“韦达定理法”设而不求计算弦
2、长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化 同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍 典型题例示范讲解例1如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求AMN面积最大时直线l的方程,并求AMN的最大面积 命题意图 直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题 本题考查处理直线与圆锥曲线相交问题的第一种方法“韦达定理法” 知识依托 弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思
3、想 错解分析 将直线方程代入抛物线方程后,没有确定m的取值范围 不等式法求最值忽略了适用的条件 技巧与方法 涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算 解法一 由题意,可设l的方程为y=x+m,其中5m0 由方程组,消去y,得x2+(2m4)x+m2=0 直线l与抛物线有两个不同交点M、N,方程的判别式=(2m4)24m2=16(1m)0,解得m1,又5m0,m的范围为(5,0)设M(x1,y1),N(x2,y2)则x1+x2=42m,x1x2=m2,|MN|=4 点A到直线l的距离为d= S=2(5+m),从而S2=4(1m)(5+
4、m)2=2(22m)(5+m)(5+m)2()3=128 S8,当且仅当22m=5+m,即m=1时取等号 故直线l的方程为y=x1,AMN的最大面积为8 解法二 由题意,可设l与x轴相交于B(m,0), l的方程为x = y +m,其中0m5 由方程组,消去x,得y 24 y 4m=0 直线l与抛物线有两个不同交点M、N,方程的判别式=(4)2+16m=16(1+m)0必成立,设M(x1,y1),N(x2,y2)则y 1+ y 2=4,y 1y 2=4m,S= 4=4S8,当且仅当即m=1时取等号 故直线l的方程为y=x1,AMN的最大面积为8 例2已知双曲线C 2x2y2=2与点P(1,2)
5、(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点 (2)若Q(1,1),试判断以Q为中点的弦是否存在 命题意图 第一问考查直线与双曲线交点个数问题,归结为方程组解的问题 第二问考查处理直线与圆锥曲线问题的第二种方法“点差法” 知识依托 二次方程根的个数的判定、两点连线的斜率公式、中点坐标公式 错解分析 第一问,求二次方程根的个数,忽略了二次项系数的讨论 第二问,算得以Q为中点弦的斜率为2,就认为所求直线存在了 技巧与方法 涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率,弦的中点坐标联系起来,相互转化 解 (1)当直线l的斜率不存在时,l
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 复习 专题讲座 直线 圆锥曲线 问题 处理 方法
限制150内