高中数学必修3-古典概型课件.ppt
《高中数学必修3-古典概型课件.ppt》由会员分享,可在线阅读,更多相关《高中数学必修3-古典概型课件.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考察两个试验:考察两个试验:(1)抛掷一枚质地均匀的硬币的试验;)抛掷一枚质地均匀的硬币的试验;(2)掷一颗质地均匀的骰子的试验)掷一颗质地均匀的骰子的试验.在这两个试验中,可能的结果分别有哪些?在这两个试验中,可能的结果分别有哪些?它们都是随机事件,我们把这类随机事件称它们都是随机事件,我们把这类随机事件称为基本事件为基本事件.基本事件:基本事件:在一次试验中可能出现的每一在一次试验中可能出现的每一个个基本结果基本结果称为基本事件。称为基本事件。基本事件基本事件基本事件的特点:基本事件的特点:(1)任何两个基本事件是互斥的任何两个基本事件是互斥的(2)任何事件都可以表示成基本事件的和任何事件
2、都可以表示成基本事件的和。练习练习1、把一枚骰子抛把一枚骰子抛6次,设正面出现的点数为次,设正面出现的点数为x1、求出求出x的可能取值情况的可能取值情况2、下列事件由哪些基本事件组成、下列事件由哪些基本事件组成(1)x的取值为的取值为2的倍数(记为事件的倍数(记为事件A)(2)x的取值大于的取值大于3(记为事件(记为事件B)(3)x的取值为不超过的取值为不超过2(记为事件记为事件C)例例1 从字母从字母a、b、c、d中任意取出中任意取出两个不同字母的试验中,有哪些基本两个不同字母的试验中,有哪些基本事件?事件?解:所求的基本事件共有解:所求的基本事件共有6个:个:A=a,b,B=a,c,C=a
3、,d,D=b,c,E=b,d,F=c,d,1 1、有限性有限性:一次试验中只有有限个基本事件一次试验中只有有限个基本事件2 2、等可能性等可能性:每个基本事件发生的可能性是相等的每个基本事件发生的可能性是相等的 具有以上两个特征的试验称为具有以上两个特征的试验称为古典概型古典概型。上述试验和例上述试验和例1的共同特点是:的共同特点是:(1 1)向一个圆面内随机地投射一)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概都是等可能的,你认为这是古典概型吗型吗?为什么?为什么?因为试验的所有可能结果是圆因为试验的所有可能结果是圆面内所
4、有的点,试验的所有可能结面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果数是无限的,虽然每一个试验结果出现的果出现的“可能性相同可能性相同”,但这个,但这个试验不满足古典概型的第一个条件。试验不满足古典概型的第一个条件。思考思考?1 1、若一个古典概型有、若一个古典概型有 n n 个基本事件,则个基本事件,则每个基本事件发生的概率为多少?每个基本事件发生的概率为多少?2 2、若某个随机事件、若某个随机事件 A A 包含包含 m m 个基本事件,个基本事件,则事件则事件A A 发生的概率为多少?发生的概率为多少?即即例:例:同时抛掷三枚质地均匀的硬币呢?同时抛掷三枚质地均匀的硬币呢
5、?解:所有的基本事件共有个:解:所有的基本事件共有个:正,正,正正,正,正,正,正,反正,正,反,正,反,正正,反,正,正,反,反正,反,反,反,正,正反,正,正,反,正,反,反,正,反,反,反,正反,反,正,反,反,反反,反,反,同时抛掷两枚质地均匀的硬币的试验中,同时抛掷两枚质地均匀的硬币的试验中,有哪些基本事件?有哪些基本事件?A=正,正正,正,B=正,反正,反C=反,正反,正,D=反,反反,反掷一颗均匀的骰子,求掷得偶数点的掷一颗均匀的骰子,求掷得偶数点的概率。概率。解:解:掷一颗均匀的骰子,它的样本空掷一颗均匀的骰子,它的样本空 间是间是=1,2=1,2,3,43,4,5 5,6 6
6、 n=6 而掷而掷得得偶数点事件偶数点事件A=2,4,6m=3P(A)=例例:题后小结:题后小结:求古典概型概率的求古典概型概率的步骤步骤:(1 1)判断判断试验是否为古典概型;试验是否为古典概型;(2 2)写出基本事件空间)写出基本事件空间 ,求求(3 3)写出事件)写出事件 ,求求(4 4)代入公式)代入公式 求概率求概率例例3 3、同时掷两个骰子,计算:、同时掷两个骰子,计算:(1 1)一共有多少种不同的结果?)一共有多少种不同的结果?(2 2)其中向上的点数之和是)其中向上的点数之和是5 5的结果有多少种?的结果有多少种?(3 3)向上的点数之和是)向上的点数之和是5 5的概率是多少?
7、的概率是多少?(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(4,1)(3,2)(2,3)(1,4)6543216543211号骰子号骰子 2号骰子号骰子(2)在上面的结果中,)在上面的结果中,向上的点数之和为向上的点数之和为5的的结果有结果有4种,分别为:种,分别为:(1,4),(2
8、,3),(3,2),(4,1)。)。(3)由于所有)由于所有36种结果是等可种结果是等可能的,其中向上点数之和为能的,其中向上点数之和为5的的结果(记为事件结果(记为事件A)有)有4种,则种,则从表中可以看出同时掷两个骰子的结果共有从表中可以看出同时掷两个骰子的结果共有36种。种。为什么要把两个骰子标上记号?如果不标记号为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?会出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(如果不标上记号,类似于(3,6)和()和(6,3)的结果)的结果将没有区别。将没有区别。为什么要把两个骰子标上记号?如果不标记号为什么要把
9、两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?会出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(如果不标上记号,类似于(3,6)和()和(6,3)的结果)的结果将没有区别。将没有区别。(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)65432165432
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 古典 课件
限制150内