铝合金热处理工艺.xls
《铝合金热处理工艺.xls》由会员分享,可在线阅读,更多相关《铝合金热处理工艺.xls(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、铝铝合合金金热热处处理理工工艺艺作者:来源:阅读次数:21033.1铝合金热处理原理铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。3.1.1铝合金热处理特点众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如46昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间
2、增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100200)内发生,称人工时效。3.1.2铝合金时效强化原理铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,
3、因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度温度关系,可用铝铜系的Al4Cu合金说明合金时效的组成和结构的变化。图31铝铜系富铝部分的二元相图,在548进行共晶转变L(Al2Cu)。铜在相中的极限溶解度5.65(548),随着温度的下降,固溶度急剧减小,室温下约为0.0
4、5。在时效热处理过程中,该合金组织有以下几个变化过程:3.1.2.1 形成溶质原子偏聚区GP()区在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称GP()区。GP()区与基体保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。3.1.2.2 GP区有序化形成GP()区随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成GP()区。它与基体仍保持共格关系,但尺寸较GP()区大。它可视为中间过渡相,常用”表示。它比GP()区周围的畸变更大,对
5、位错运动的阻碍进一步增大,因此时效强化作用更大,”相析出阶段为合金达到最大强化的阶段。3.1.2.3形成过渡相随着时效过程的进一步发展,铜原子在GP()区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相。由于的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。3.1.2.4 形成稳定的相过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为相此时相与基体的共格关系完全破坏,并有自己独立的晶格
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 铝合金 热处理 工艺
限制150内