高中数学复习专题讲座(第32讲)数学归纳法的解题应用.doc
《高中数学复习专题讲座(第32讲)数学归纳法的解题应用.doc》由会员分享,可在线阅读,更多相关《高中数学复习专题讲座(第32讲)数学归纳法的解题应用.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、题目 高中数学复习专题讲座数学归纳法的解题应用高考要求 数学归纳法是高考考查的重点内容之一 类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法 重难点归纳 (1)数学归纳法的基本形式设P(n)是关于自然数n的命题,若1P(n0)成立(奠基)2假设P(k)成立(kn0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立 (2)数学归纳法的应用具体常用数学归纳法证明 恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等 典型题例示范讲解 例1试证明 不论正数a、b、c是等差数列还是等比数列,当n1,nN*且a、b
2、、c互不相等时,均有 an+cn2bn 命题意图 本题主要考查数学归纳法证明不等式 知识依托 等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤 错解分析 应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况 技巧与方法 本题中使用到结论 (akck)(ac)0恒成立(a、b、c为正数),从而ak+1+ck+1akc+cka 证明 (1)设a、b、c为等比数列,a=,c=bq(q0且q1)an+cn=+bnqn=bn(+qn)2bn(2)设a、b、c为等差数列,则2b=a+c猜想()n(n2且nN*)下面用数学归纳法证明 当n=2时,由2(a2+c2)(a+c)2,设n=k时成
3、立,即则当n=k+1时, (ak+1+ck+1+ak+1+ck+1)(ak+1+ck+1+akc+cka)=(ak+ck)(a+c)()k()=()k+1也就是说,等式对n=k+1也成立 由知,an+cn2bn对一切自然数n均成立 例2在数列an中,a1=1,当n2时,an,Sn,Sn成等比数列 (1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;(3)求数列an所有项的和 命题意图 本题考查了数列、数学归纳法、数列极限等基础知识 知识依托 等比数列的性质及数学归纳法的一般步骤 采用的方法是归纳、猜想、证明 错解分析 (2)中,Sk=应舍去,这一点往往容易被忽视 技
4、巧与方法 求通项可证明是以为首项,为公差的等差数列,进而求得通项公式 解 an,Sn,Sn成等比数列,Sn2=an(Sn)(n2) (*)(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=由a1=1,a2=,S3=+a3代入(*)式得 a3=同理可得 a4=,由此可推出 an=(2)当n=1,2,3,4时,由(*)知猜想成立 假设n=k(k2)时,ak=成立故Sk2=(Sk)(2k3)(2k1)Sk2+2Sk1=0Sk= (舍)由Sk+12=ak+1(Sk+1),得(Sk+ak+1)2=ak+1(ak+1+Sk)由知,an=对一切nN成立 (3)由(2)得数列前n项和Sn=,
5、S=Sn=0 例3是否存在a、b、c使得等式122+232+n(n+1)2=(an2+bn+c) 解 假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有于是,对n=1,2,3下面等式成立122+232+n(n+1)2=记Sn=122+232+n(n+1)2设n=k时上式成立,即Sk= (3k2+11k+10)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)=3(k+1)2+11(k+1)+10也就是说,等式对n=k+1也成立 综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立 学生巩固练习 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 复习 专题讲座 32 数学 归纳法 解题 应用
限制150内