小学六年级数学奥数讲座共30讲含答案 (15).doc
《小学六年级数学奥数讲座共30讲含答案 (15).doc》由会员分享,可在线阅读,更多相关《小学六年级数学奥数讲座共30讲含答案 (15).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 小学数学奥数基础教程(六年级)本教程共30讲操作问题所谓操作问题,实际上是对某个事物按一定要求进行的一种变换,这种变换可以具体执行。例如,对任意一个自然数,是奇数就加1,是偶数就除以2。这就是一次操作,是可以具体执行的。操作问题往往是求连续进行这种操作后可能得到的结果。例1 对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2。这算一次操作。现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?讨论:同学们碰到这种题,可能会“具体操作”一下,得到这个过程还可以继续下去,虽然一直没有得到100,但也不能肯定得不到100。当然,连续操作下去会发现,数字一旦重复
2、出现后,这一过程就进入循环,这时就可以肯定不会出现100。因为这一过程很长,所以这不是好方法。解:因为231和121都是11的倍数,2不是11的倍数,所以在操作过程中产生的数也应当是11的倍数。100不是11的倍数,所以不可能出现。由例1看出,操作问题不要一味地去“操作”,而要找到解决问题的窍门。例2 对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。如对18和42可进行这样的连续变换:18, 42 18, 24 18, 6 12, 6 6, 6。直到两数相同为止。问:对12345和54321进行这样的连续变换,最后得到的两个相同的数是几?分析与解:如果两个数的最大公约数是a
3、,那么这两个数之差与这两个数中的任何一个的最大公约数也是a。因此在每次变换的过程中,所得两数的最大公约数始终不变,所以最后得到的两个相同的数就是它们的最大公约数。因为12345和54321的最大公约数是3,所以最后得到的两个相同的数是3。注:这个变换的过程实际上就是求两数最大公约数的辗转相除法。例3 右图是一个圆盘,中心轴固定在黑板上。开始时,圆盘上每个数字所对应的黑板处均写着0。然后转动圆盘,每次可以转动90的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上。问:经过若干次后,黑板上的四个数是否可能都是999?解:不可能。因为每次加上的数之和是 1
4、234=10,所以黑板上的四个数之和永远是10的整数倍。 9994=3996,不是10的倍数,所以黑板上的四个数不可都是999。例4 在左下图中,对任意相邻的上下或左右两格中的数字同时加1或减1,这算作一次操作。经过若干次操作后,左下图变为右下图。问:右下图中A格中的数字是几?分析与解:每次操作都是在相邻的两格,我们将相邻的两格染上不同的颜色(见右图)。因为每次操作总是一个黑格与一个白格的数字同时加1或减1,所以所有黑格内的数字之和与所有白格内的数字之和的差保持不变。因为原题左图的这个差是13,所以原题右图的这个差也是13。由(A12)-12=13解得 A=13。例5 将110十个数随意排成一
5、排。如果相邻两个数中,前面的数大于后面的数,那么就交换它们的位置。如此操作下去,直到前面的数都小于后面的数为止。当110十个数如下排列时,需交换多少次?8,5,2,6,10,7,9,1,4,3。分析与解:为了不打乱仗,我们按照一定的方法来交换。例如,从最大的数10开始交换,将10交换到它应在的位置后,再依次对9,8,7,实施交换,直至按从小到大排列为止。因为10后面有5个比它小的数,所以对10连续交换5次,10到了最右边,而其它各数的前后顺序没有改变;再看9,9后面有3个比它小的数,需交换3次,9到了右边第二位,排在10前面;再依次对8,7,6,实施这样的交换。10后面有5个比它小的数,我们说
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学六年级数学奥数讲座共30讲含答案 15 小学 六年级 数学 讲座 30 答案 15
限制150内