敲开高中数学之门思想方法(讲座).doc
《敲开高中数学之门思想方法(讲座).doc》由会员分享,可在线阅读,更多相关《敲开高中数学之门思想方法(讲座).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、敲开数学大门的钥匙-数学思想方法主讲: 石阡中学 李朝臣第1讲函数与方程思想第2讲 数形结合思想 第3讲 分类讨论思想 知识网络构建第4讲 转化与化归思想近几年全国卷考情分析数学思想方法是对数学知识最高层次的提炼与概括,数学思想方法较之数学知识具有更高的层次,具有理性的地位,它是一种数学意识,属于思维和能力的范畴,它是数学知识的精髓,是知识转化为能力的桥梁高考中把函数与方程的思想作为数学思想方法的重点进行考查,通过选择题和填空题考查函数与方程思想的基本运算,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力相综合的角度进行深入考查;对数形结合思想的考查侧重两个方面:一方面是
2、充分利用选择题和填空题的题型特点(只需写出结果而无需写出解答过程),突出将复杂的数量关系问题转化为直观的几何图形问题的意识,即由“数”到“形”的转化;另一方面在解答题中以由“形”到“数”的转化为主来考查数形结合思想;对于分类与整合思想是以解答题为主进行考查的,通常是通过对含有字母参数的数学问题进行分类与整合的研究,考查考生思维的严谨性与周密性;转化与化归思想在高考中的重点是一些常用的变换方法,如一般与特殊的转化,繁与简的转化,构造转化,命题的等价转化等纵观近几年的高考试题,都加大了对数学思想方法的考查,把数学思想方法的考查寓于各部分知识的考查之中,以知识为载体,着重考查能力与方法题目很常见预测
3、2013年数学高考中,仍然会在选择题、填空题、解答题中以初等数学的各个知识点为背景,考查数学思想方法,对数学思想方法的考查不会削弱,会更加鲜明,更加重视第1讲函数与方程思想主干知识整合1“函数与方程”思想的地位函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多函数思想即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决2“函数与方程”思想的作用运用方程思想解决问题主要从四个方面着手:一是把
4、问题中对立的已知与未知建立相等关系统一在方程中,通过解方程解决;二是从分析问题的结构入手,找出主要矛盾,抓住某一个关键变量,将等式看成关于这个主变元(常称为主元)的方程,利用方程的特征解决;三是根据几个变量间的关系,符合某些方程的性质和特征(如利用根与系数的关系构造方程等),通过研究方程所具有的性质和特征解决;四是中学数学中常见的数学模型(如函数、曲线等),经常转化为方程问题去解决3“函数与方程”思想在高中数学中的体现(1) 函数与方程是密切相关的,对于函数yf(x),当y0时,就转化为方程f(x)0,也可以把函数式yf(x)看做二元方程yf(x)0.函数问题(例如求反函数,求函数的值域等)可
5、以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)0,就是求函数yf(x)的零点(2) 函数与不等式也可以相互转化,对于函数yf(x),当y0时,就转化为不等式f(x)0,借助于函数图象与性质解决有关问题,而研究函数的性质,也离不开解不等式(3) 数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要(4) 函数f(x)(axb)n(nN*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题(5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有
6、关理论(6) 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决要点热点探究探究点一函数方程思想在求解最值或参数的取值范围的应用例1 已知函数f(x)x32x2x,g(x)x2xa,若函数yf(x)与yg(x)的图象有三个不同的交点,求实数a的取值范围【解答】 函数f(x)与yg(x)的图象有三个不同的交点等价于方程x32x2xx2xa有三个不同的实数根,即关于x的方程x33x2a0有三个不同的实数根,令h(x)x33x2a,则h(x)3x26x.令h(x)0,解得0x0,解得x2.所以h(x)在(,0)和(2,)上为增函数,在(0,2)上为减函数所以h
7、(0)为极大值,h(2)为极小值从而h(2)0h(0),解得4a0.【点评】 本题在求解参数取值范围时,利用函数的极值处理,迅速准确地使问题得到解决练习:如果关于实数x的方程ax23x的所有解中,仅有一个正数解,那么实数a的取值范围为()Aa|2a2 Ba|a0或a2 Ca|a2或a0;t(,1),(1,)时,f(t)0,证明:f(x);(3)若不等式x2f(x2)m22bm3时,x1,1及b1,1都恒成立,求实数m的取值范围【解答】 用三点共线的充要条件构建目标函数,借助导数研究单调性,利用值域构建不等式求解参数范围问题(1)y2f(1)ln(x1)0,y2f(1)ln(x1),由于A、B、
8、C三点共线,即y2f(1)ln(x1)1,yf(x)ln(x1)12f(1),f(x),故f(1),f(x)ln(x1)(2)令g(x)f(x),由g(x),x0,g(x)0,g(x)在(0,)上是增函数,故g(x)g(0)0,即f(x).(3)原不等式等价于x2f(x2)m22bm3,令h(x)x2f(x2)x2ln(x21),由h(x)x,当x1,1时,h(x)max0,m22bm30.令Q(b)m22bm3,则解得m3或m3.练习 对于满足0p4的所有实数p,不等式x2px4xp3都成立,则实数x的取值范围是_x3或x1,若仅有一个常数c使得对于任意的x,都有y满足方程logaxloga
9、yc,这时a的取值的集合为_ (1)2【解析】 由logaxlogayc,得y(xa,2a),则当xa,2a时,y.又对于任意的xa,2a,都有ya,a2,因此又仅有一个常数c,所以2loga23a2.(2)函数f(x)(0x2)的值域是() (2)CA. B. C. D.【解析】 由y,得y21cos2x5y24y2cosx.令tcosx(t1,1),则等价于方程t24y2t5y210在1,1上有实数根令g(t)t24y2t5y21,g(1)y20,g(1)9y20,故y2,因此值域为,选C.探究点四运用函数、方程、不等式的相互转化,解决有关问题例4 若关于x的方程x22kx10的两根x1、
10、x2满足1x10x22,则k的取值范围是()A. B. C. D. A【解析】设函数f(x)x22kx1,关于x的方程x22kx10的两根x1、x2满足1x10x22,即k0,故选择A.练习 已知aR,若关于x的方程x2x|a|0有实根,则a的取值范围是_【解析】方程即|a|x2x2,利用绝对值的几何意义,得|a|,可得实数a的取值范围为.探究点五函数方程思想在数列问题中的应用例5 2010全国卷 记等差数列an的前n项和为Sn,设S312,且2a1,a2,a31成等比数列,求Sn.【解答】 设数列an的公差为d,依题设有即解得或因此Snn(3n1),或Sn2n(5n)练习 已知函数f(x)若
11、数列an满足anf(n)(nN*),且an是递增数列,则实数a的取值范围是()A. B. C2,3) D(1,3)【解析】A依题意,数列an满足anf(n)(nN*),且an是递增数列,所以f(x)在(0,)上是增函数,所以解得aln21且x0时,exx22ax1.【解答】(1)f(x)ex2,所以当xln2,)时,f(x)是增函数;当x(,ln2)时,f(x)是减函数所以f(x)的单调递增区间是ln2,),单调递减区间是(,ln2)所以f(x)极小值f(ln2)22ln22a.(2)证明:设g(x)exx22ax1,则g(x)ex2x2a,由(1)知当aln21时,g(x)最小值22ln22
12、a,所以有g(x)最小值0,即g(x)在R上是增函数,于是当aln21时,对任意x(0,),都有g(x)g(0),所以g(x)exx22ax10,所以exx22ax1.22010抚州卷 已知数列an,bn中,a10,b11,且当nN*时,an,bn,an1成等差数列,bn,an1,bn1成等比数列(1)求数列an,bn的通项公式;(2)求最小自然数k,使得当nk时,对任意实数0,1,不等式(23)bn(24)an(3)恒成立【解答】 (1)依题意2bnanan1,abnbn1.又a10,b11, bn0,an0,且2bn,2(n2), 数列是等差数列,又b24,b39,n,n1也适合bnn2,
13、an(n1)n.(2)将an,bn代入不等式(23)bn(24)an(3),整理得(2n1)n24n30.令f()(2n1)n24n3,则f()是关于的一次函数,由题意可得解得n1或n3.存在最小自然数k3,使得当nk时,不等式恒成立规律技巧提炼1函数方程思想就是用函数、方程的观点和方法处量变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想(1)函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量之间的相互制约关系,最后解决问题,这就是函数思想应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:根据题意建立变量之间的函数关系
14、式,把问题转化为相应的函数问题;根据需要构造函数,利用函数的相关知识解决问题2)方程思想(:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想2函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法来支援,函数与方程之间的辩证关系,形成了函数方程思想第2讲数形结合思想主干知识整合1数形结合思想的概念数形结合思想,就是把问题的数量关系和图形结合起来考查的思想方法,即根据解决问题的需要,可以把数量关系的问题转化为图形的性质和特征去
15、研究,或者把图形的性质问题转化为数量关系的问题去研究数形结合思想,不仅是一种重要的解题方法,而且也是一种重要的思想方法,在高考中经常考查2数与形转换的三条途径(1)通过坐标系的建立,引入数量化静为动,以动求解(2)转化,通过分析数与式的结构特点,把问题转化到形的角度来考虑如将转化为勾股定理或平面上两点间的距离等(3)构造,通过对数(式)与形特点的分析,联想相关知识构造图形或函数等比如构造一个几何图形,构造一个函数,构造一个图表等3数形结合的主要解题方式(1)数转化为形,即根据所给出的“数”的特点,构造符合条件的几何图形,用几何方法解决(2)形转化为数,即根据题目特点,用代数方法去研究几何问题(
16、3)数形结合,即用数研究形,用形研究数,相互结合,使问题变得简捷、直观、明了华罗庚先生说:“数缺形时少直观,形少数时难入微”运用数形结合思想解题,不仅直观,易于寻找解题途径,而且能避免繁杂的计算和推理,简化解题过程,可起到事半功倍的效果所以华先生还一语双关地告诫学生“不要得意忘形”要点热点探究探究点一代数问题几何化以形助数例1 (1)2010湖北卷 若直线yxb与曲线y3有公共点,则b的取值范围是()A1,12 B12,12 (1)CC12,3 D1,3【解析】 曲线方程可化简为(x2)2(y3)24(1y3),即表示圆心为(2,3),半径为2的半圆依据数形结合,当直线yxb与此半圆相切时须满
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 敲开 高中数学 思想 方法 讲座
限制150内