冲量,动量定理教案44459.pdf
《冲量,动量定理教案44459.pdf》由会员分享,可在线阅读,更多相关《冲量,动量定理教案44459.pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 动量定理 1.动量(1)定义:运动物体的质量和速度的乘积叫做动量,p=mv 动量的单位:kgm/s.(2)物体的动量表征物体的运动状态,其中的速度为瞬时速度,通常以地面为参考系.(3)动量是矢量,其方向与速度v的方向相同.两个物体的动量相同含义:大小相等,方向相同.(4)注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量,动能是标量;动量和动能的关系是:p22mEk.2.动量的变化量(1)p=ptp0.(2)动量的变化量是矢量,其方向与速度变化v的方向相同,与合外力冲量的方向相同,跟动量的方向无关.(3)求动量变化量的方法:定义法 p=ptp0=mv2mv1
2、;动量定理法 p=Ft.3.冲量(1)定义:力和力的作用时间的乘积,叫做该力的冲量 I=Ft,冲量的单位:N s.(2)冲量是过程量,它表示力在一段时间内的累积作用效果.(3)冲量是矢量,其方向由力的方向决定.如果在作用时间内力的方向不变,冲量的方向就与力的方向相同.(4)求冲量的方法:定义法 I=Ft(适用于求恒力的冲量);动量定理法 I=p.4、动量定理(1)物体所受合外力的冲量,等于这个物体动量的增加量,这就是动量定理.表达式为:Ftpp 或 Ftmvvm(2)动量定理的研究对象是单个物体或可视为单个物体的系统.当研究对象为物体系时,物体系总动量的增量等于相应时间内物体系所受的合外力的冲
3、量.所谓物体系总动量的增量是指系统内各物体的动量变化量的矢量和.所谓物体系所受的合外力的冲量是指系统内各物体所受的一切外力的冲量的矢量和,而不包括系统内部物体之间的相互作用力(内力)的冲量;这是因为内力总是成对出现的,而且它们的大小相等、方向相反,其矢量和总等于零.(3)动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F应该是合外力对作用时间的平均值.说明:在打击和碰撞问题中,物体之间的相互作用力的很大,大小变化很快,作用时间 2 短,这种作用力通常叫冲力,冲力的本质是弹力.当冲力比其他力大得多时,可以忽略其他力,把冲力作为公式中的
4、F,但是我们必须清楚这只是一种近似的处理方法.从物理意义上讲,公式中的F应该是合力,而不是冲力.(4)动量定理公式中的Ft是合外力的冲量,也可以是外力冲量的矢量和,是使研究对象动量发生变化的原因.在所研究的物理过程中:如果各个外力的作用时间相同,求合外力的冲量时,可以先按矢量合成法则求所有外力的合力,然后再乘以力的作用时间;也可以先求每个外力在作用时间内的冲量,然后再按矢量合成法则求所有外力冲量的矢量和;如果作用在研究对象上的各个力的作用时间不相同,就只能求每个力在相应时间内的冲量,然后再求所有外力冲量的矢量和.(5)动量定理中mv2mv1是研究对象的动量增量,是过程末态动量与初态动量的差值(
5、矢量减法).式中“”号是运算符号,与正方向的选取无关.(6)动量定理中的等号(=),表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同,但绝不能认为合外力的冲量就是动量的增量.合外力的冲量是引起研究对象的运动状态改变的外来因素,而动量的增量则是研究对象受外力冲量后所导致的必然结果.(7)Ft=mv是矢量式,在应用动量定理时,应该遵循矢量运算的平行四边形法则.也可以采用正交分解法,把矢量运算转化为标量运算.假设用Fx(或Fy)表示合外力在x(或y)轴上的分量,vx0(或vy0)和vx(或vy)表示物体的初速度和末速度在x(或y)轴上的分量,则 Fxt=mvxmvx0 Fyt=mv
6、ym vy0 上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一坐标轴上的分量.方向处理方法:在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对未知量,一般先假设为正方向,若计算结果为正,说明实际方向与坐标轴正方向一致,若计算结果为负,说明实际方向与坐标轴正方向相反.(8)牛顿定律跟动量定理的关系 根据Fma得 Fmamtvv=tpp 即Ftp.这是牛顿第二定律的另一种表达形式:合外力F等于物体动量的变化率tp.5、疑难突破 1.ppp指的是动量的变化量,不要理解为是动量。p的方向可以跟初动量的方向相同(同一直线,动量
7、增大);可以跟初动量的方向相反(同一直线,动量减小);也可以跟初动量的方向成某一角度。3 但动量变化量(pp)的方向一定跟合外力的冲量的方向相同.2.(1)应用动量定理I=p求变力的冲量的方法:如果物体受到变力的作用,则不能直接用Ft求变力的冲量,而应求出该力作用下物体动量的变化p,等效代换变力的冲量I=p.(2)应用p=Ft求恒力作用下的曲线运动中物体动量的变化:在曲线运动中,速度方向时刻在变化,求动量的变化(p=p2p1)需要应用矢量运算方法,比较麻烦。如果作用力是恒力,可以求出恒力的冲量等效代换动量的变化.如平抛运动中动量的变化问题.思考:以初速度v0平抛出一个质量为m的物体,求抛出后t
8、秒内物体的动量变化。答案:p=Ft=mgt,方向竖直向下 3.用动量定理解题的基本思路(1)明确研究对象和研究过程.研究对象可以是一个物体,也可以是几个物体组成的系统.系统内各物体可以是保持相对静止的,也可以是相对运动的.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施给研究对象的力.所有外力之和为合外力.研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力.如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和.(3)规定正方向.由于力、冲量、速度、动量
9、都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和).(5)根据动量定理列式求解.典型问题 1 掌握求恒力和变力冲量的方法。恒力 F 的冲量求法:直接根据 I=Ft求 变力的冲量求法:由动量定理或 F-t图线与横轴所夹的面积来求。例 1.1质量为m的小球由高为H倾角为 光滑斜面顶端,无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?解:力的作用时间都是gHgHt2sin1sin22 力的大小依次是mg、mgcos 和mg.sin,所以它们的冲量依次是:gHmIgHmIgHmI
10、NG2,tan2,sin2合 特别要注意:该过程中弹力虽然不做功,但对物体有冲量。例 1.2一个物体同时受到两个力 F1、F2的作用,F1、F2与时间 t的关系如图 1 所示,如果该物体从静止开始运动,经过 t=10s,F1、F2图 1 4 以及合力 F 的冲量各是多少?解:经过 t=10s 后,F1的冲量 I1=1010/2=50N.S F2的冲量 I2=50N.S,合力 F 的冲量为 0.例 1.3 一质量为 100g 的小球从 0.80m 高处自由下落到一厚软垫上若从小球接触软垫到小球陷至最低点经历了 0.2s,则软垫对小球的冲量为_(取 g=10m/s2,不计空气阻力)解:小球从高处自
11、由下落到软垫陷至最低点经历了两个过程,从高处自由下落到接触软垫前一瞬间,是自由下落过程,接触软垫前一瞬间速度由:ghvt22 求得smghvt/42.接触软垫时受到软垫向上作用力N和重力G(=mg)作用,规定向下为正,由动量定理:(mg-N)t=0-mtv 故:在重物与地面撞击问题中,是否考虑重力,取决于相互作用力与重力大小的比较,此题中N=0.3N,mg=0.1N,显然在同一数量级上,不可忽略 若二者不在同一数量级,相差极大,则可考虑忽略不计(实际上从同一高度下落,往往要看撞击时间是否极短,越短冲击力越大)Ft 图上的“面积”表示冲量:冲力和平均力的冲量相等的理解。如图:例 1.4、如果物体
12、所受空气阻力与速度成正比,。当以速度 v1竖直上抛后,又以速度 v2返回出发点。这个过程共用了多少时间?解:如图所示,作出上升阶段和下降阶段的 v-t 图线,图中蓝色线所示。上升和下降阶段加速度都是减少的。图线下方的“面积”表示位移的大小,即 s1=s2=h。由于阻力与速度大小成正比,在图中作出 f-t 图线(图中红色线所示),则图线下方的面积一定相等,而此“面积”表示上升阶段和下降阶段阻力的冲量大小,故有 If 1=-If 2。取向下为正方向,对全过程由动量定理可得:mgt=m(v1+v2),解得 t=(v1+v2)/g 点评:该题是利用物理图象解题的范例,运用物理图象解题形象直观,使解题过
13、程大大简化。例 1.5 跳伞运动员从 2000m 高处跳下,开始下落过程未打开降落伞,假设初速度为零,所受空气阻力与下落速度大小成正比,最大降落速度为 vm=50m/s。运动员降落到离地面 s=200m高处才打开降落伞,在 1s 内速度均匀减小到 v1=5.0m/s,然后匀速下落到地面,试求运动员在空中运动的时间。t F O F t 5 解:整个过程中,先是变加速运动,接着匀减速,最后匀速运动,作出 vt 图线如图(1)所示。由于第一段内作非匀变速直线运动,用常规方法很难求得这 1800m 位移内的运动时间。考虑动量定理,将第一段的 vt 图按比例转化成 ft 图,如图(2)所示,则可以巧妙地
14、求得这段时间。设变加速下落时间为 t1,利用动量定理得:mfmvImgt1 1sktvktkvtfIf s1=1800m 又匀速运动时 mg=kvm,得mvmgk 代入第一式得:mmmvvmgsmgt11 svsgvtmm41501800105011 第二段 1s 内:22/451505sma mavvsm5.2722222 所以第三段时间:svsst5.3455.2720023 空中的总时间:stttt5.76321 问题 2 掌握求动量及动量变化的方法 求动量的变化要用平行四边形定则或动量定理。例 2.1 一个质量为 m=40g 的乒乓球自高处落下,以速度v=1m/s碰地,竖直向上弹回,碰
15、撞时间极短,离地的速率为v=0.5m/s。求在碰撞过程中,乒乓球动量变化为多少?解:取竖直向下为正方向,乒乓球的初动量为:smkgsmkgmvp/04.0/104.0 乒乓球的末动量为:smkgsmkgvmp/02.0/)5.0(04.0 乒乓球动量的变化为:ppp=smkgsmkg/06.0/04.002.0 负号表示p的方向与所取的正方向相反,即竖直向上。例 2.2、以初速度v0平抛出一个质量为m的物体,抛出后t秒内,物体的动量变化是多少?解:因为合外力就是重力,所以p=Ft=mgt p p p 正方向 6 例 2.3、一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称
16、为过程,进人泥潭直到停止的过程称为过程,则()A、过程 I 中钢珠的动量的改变量等于重力的冲量 B、过程中阻力的冲量的大小等于过程 I 中重力的冲量的大小 C、I、两个过程中合外力的总冲量等于零 D、过程中钢珠的动量的改变量等于零 解:根据动量定理可知,在过程 I 中,钢珠从静止状态自由下落.不计空气阻力,小球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的 冲量,选项A 正确;过程I 中阻力的冲量的大小等于过程I 中重力的冲量的大小与过程中重力的冲量的大小之和,显然B 选项不对;在 I、两个过程中,钢珠动量的改变量各不为零.且它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故
17、合外力的总冲量等于零,故 C选项正确,D 选项错误。因此,本题的正确选项为 A、C。问题 3 应用动量定理求力 例 3.1一个质量为 m=2kg的物体,在 F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为 F2=5N,方向不变,物体又运动了 t2=4s后,撤去外力,物体再经过 t3=6s停下来。求物体在水平面上所受的摩擦力。解:规定推力的方向为正方向 在物体运动的整个过程中,物体的初动量 P1=0,P2=O 跟据动量定理有:0)(3212211tttftFtF 即0)645(4558f 解得 Nf4 由例可知,合理选取研究过程,能简化解题步骤,提高解题速度。本题也
18、可以用牛顿运动定律求解。同学们可比较这两种求解方法的简繁情况。.例 3.2 质量是 60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中已知弹性安全带缓冲时间为 1.2s.安全带长 5m.求安全带所受的平均冲力(g=10ms2)解:人下落为自由落体运动,下落到底端 时的速度为:ghV220 smghV/1020 取人为研究对象,在人和安全带相互作用的过程中,人受到重力 mg 和安全带给的冲力 F,取 F 方向为正方向,由动量定理得:Ft=mVmV0 所以NtmVmgF11000(方向竖直向下)注意:动量定理既适用于恒力作用下的问题,也适用于变力作用下的问题如果是在变
19、力作用下的问题,由动量定理求出的力是在 t 时间内的平均值 例 3.3、“蹦极”是一项勇敢者的运动,如图 511所示,某人用弹性橡皮绳拴住身体自高空P处自由下落,在空中感受失重的滋味.若此人质量为 60 kg,橡皮绳长 20 m,人可看成质点,g取 10 m/s2,求:7 P 图 511(1)此人从点P处由静止下落至橡皮绳刚伸直(无伸长)时,人的动量为_;(2)若橡皮绳可相当于一根劲度系数为 100 N/m 的轻质弹簧,则此人从P处下落到_m时具有最大速度;(3)若弹性橡皮绳的缓冲时间为 3 s,求橡皮绳受到的平均冲力的大小.解:(1)人从高空落下,先在重力作用下做自由落体运动,弹性橡皮绳拉直
20、后除受到重力外还受到橡皮绳的弹力F作用.自由落体运动的时间为t1=gh2=10202 s=2 s 自由落体运动的末速度为 v=gt1=20 m/s 此时他的动量为 p=mv=1 200 kgm/s.(2)当他到达平衡位置时,速度最大,则 kx=mg 平衡位置时橡皮绳伸长量为x=6 m,他从P处下落了 26 m.(3)对人从开始下落到速度减为零的全过程,由动量定理得 mg(t1+t2)Ft2=0 解得 F=1000 N 根据牛顿第三定律得,橡皮绳受到的平均冲力大小为 1000 N.4、求解曲线运动问题 例 4.1 如图 2 所示,以 Vo 10ms的初速度、与水平方向成 300角抛出一个质量 m
21、 2kg的小球忽略空气阻力的作用,g 取 10ms2求抛出后第 2s 末小球速度的大小 解:小球在运动过程中只受到重力的作用,在水平方向做匀速运动,在竖直方向做匀变速运动,竖直方向应用动量定理得:Fyt=mVy-mVy0 所以 mgt=mVy-(-mV0.sin300)解得 Vy=gt-V0.sin300=15m/s.而 Vx=V0.cos300=sm/35 第 2s 未小球的速度大小为:smVVVy/310220 注意:动量定理不仅适用于物体做直线运动的问题,而且也适用物体做曲线运动的问题,在求解曲线运动问题中,一般以动量定理的分量形式建立方程,即:Fxt=mVx-mVx0 V0 300 图
22、 2 8 Fyt=mVy-mVy0 例 4.2从高为H的平台上,同时水平抛出两个物体A和B,已知它们的质量mB=2mA,抛出时的速度vA=2vB,不计空气阻力,它们下落过程中动量变化量的大小分别为pA和pB,则 A.pA=pB B.pA=2pB C.pB=4pA D.pB=2pA 解:由t=gH2知tA=tB,由动量定理知p=mgt,故pB=2pA.答案:D 例 4.3、质量为m的小球用长为R的细绳的一端系住,在水平光滑的平面内绕细绳的另一端做匀速圆周运动,速率为v,向心力FmRv2.求半周期内向心力的冲量。解:在半个周期的冲量不等于mRv22T 因为向心力是个变力(方向时刻在变).在半个周期
23、的始、末线速度方向相反,动量的变化量是 2mv,根据动量定理可知,向心力在半个周期的冲量大小也是 2mv,方向与半个周期的开始时刻线速度的方向相反.5、求解流体问题 例 5.1 某种气体分子束由质量 m=5.4X10-26kg,速度 V 460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,如分子束中每立方米的体积内有n01.5X1020个分子,求被分子束撞击的平面所受到的压强 解:设在t 时间内射到某平面 S 的上的气体的质量为 M,则:mntSVM0.取 M 为研究对象,受到的合外力等于平面作用到气体上的压力 F 以 V 方向规定为正方向,由动量定理得:-
24、F t=MV-(-MV)解得平均冲力为:SmnVF022 平面受到的压强 P 为:aPmnVSFP428.32/02 注意:处理有关流体(如水、空气、高压燃气等)撞击物体表面产生冲力(或压强)的问题,可以说非动量定理莫属 解决这类问题的关键是选好研究对象,一般情况下选在极短时间t 内射到物体表面上的流体为研究对象 例 5.2、自动称米机已被许多粮店广泛使用。买者认为:因为米落到容器中时有向下的冲力而不划算。卖者认为:当预定米的质量数满足时,自动装置即刻切断米流,此刻尚有一些米仍在空中,这些米是多给买者的,因而双方争执起来,究竟对哪方更划算呢?解:设米粒的流量为 d(kg/s),它是恒定的。自动
25、装置能即刻在出口处切断米流,米流在出口处速度很小可视为零。若切断米流后,盛米容器中静止的那部分米的质量为 m1kg,空中还在下落的米的质量为 m2kg。极短时间 t 内落在静止的米堆上的一部分米的质量 m=d t。设 m 落在米堆上之前的速度为 V,经过 t 后静止,其受力如图 13 所示。F mg 图 13 9 取向上为正方向,由动量定理得:(F-mg)t=0-(-mV)即 F=dV+gd t 设米从自动装置出口处落到静止部分米表面所用的时间为 t,则 V=gt 由空中部分米的质量m2=dt,可得 dV=dgt=m2g 即 F=m2g+mg.根据牛顿第三定律得 F/=F,称米机读数为 M=m
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冲量 动量 定理 教案 44459
限制150内