1.2独立性检验的基本思想及其初步应用(二)教案(新人教A版选修1—2)31976.pdf
《1.2独立性检验的基本思想及其初步应用(二)教案(新人教A版选修1—2)31976.pdf》由会员分享,可在线阅读,更多相关《1.2独立性检验的基本思想及其初步应用(二)教案(新人教A版选修1—2)31976.pdf(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、知识改变命运,学习成就未来 欢迎各位老师踊跃投稿,稿酬丰厚 邮箱: 第 1 页 共 2 页 第二课时 1.2独立性检验的基本思想及其初步应用(二)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K的含义.教学过程:一、复习准备:独立性检验的基本步骤、思想 二、讲授新课:1.教学例 1:例 1 在某医院,因为患心脏病而住院的 665名男性病人中,有
2、214人秃顶;而另外 772名不是因为患心脏病而住院的男性病人中有 175名秃顶.分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出2K的值;第四步:解释结果的含义.通过第 2 个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推
3、广.2.教学例 2:例 2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取 300名学生,得到如下列联表:喜欢数学课程 不喜欢数学课程 总 计 男 37 85 122 女 35 143 178 总 计 72 228 300 由表中数据计算得到2K的观察值4.513k.在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:使得2(3.841)0.05P K成立的前提是假设“性别与是否喜欢数学课程之间没有知识改变命运,学习成就未来 欢迎各位老师踊跃投稿,稿酬丰厚 邮箱: 第 2 页 共 2 页 关系”.如果这个前提不成立,上面的概率估计式就不一定正确;结论有 95%的把握认为“性别与喜欢数学课程之间有关系”的含义;在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.3.小结:独立性检验的方法、原理、步骤 三、巩固练习:某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?不健康 健 康 总计 不优秀 41 626 667 优 秀 37 296 333 总 计 78 922 1000
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2 独立性 检验 基本 思想 及其 初步 应用 教案 新人 选修 31976
限制150内