变量之间的关系知识点与常见题型.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《变量之间的关系知识点与常见题型.doc》由会员分享,可在线阅读,更多相关《变量之间的关系知识点与常见题型.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、变量之间的关系一、 基础知识1、常量:在一组数据中或者关系式中不会没发生变化的量;2、变量:变化的量(1)自变量:可以自己发生变化的量;(2)因变量:随自变量的变化而变化的量。二、表示方式1、 表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计;2、关系式(1)能根据题意列简单的关系式;(2)能利用关系式进行简单的计算;3、图像(1) 识别图像是否正确;(2) 利用图像尽可能地获取自变量因变量的信息。1、明明从给远在的爷爷打,费随着时间的变化而变化,在这个过程中,因变量是( )A、明明 B、费 C、时间 D、爷爷2、某城市大剧院地面的一部
2、分为扇形,观众席的座位按下列方式设置:排 数1234座位数50535659上述问题中,第五排、第六排分别有 个、 个座位;第排有 个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量, 是自变量, 是因变量。4、下表中的数据是根据某地区入学儿童人数编制的:年份19981999200020012002入学儿童人数29302720252023302140(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着自变量的变化,因变量变化的趋势是什么?(3)你认为入学儿童的人
3、数会变成零吗? 5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0x30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表格中可知,当时间x在什么围,学生的接受能力逐步增强?当时间x在什么围,学生的接受能力逐步降低?(5) 根据表格大致估计当时间为23分钟时
4、,学生对概念的接受能力是多少?6 下表是某同学做“观察水的沸腾”实验时所记录的数据:时间(分)0123456789101112温度()6065707580859095100100100100100(1)时间为8分钟时,水的温度是多少?(2)上表反应了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)水的温度是怎样随时间变化的?(4)根据表格,你认为13分钟、14分钟时水的温度是多少?(5)为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气?1.给定自变量与因变量的关系式,当x=2时,= ,当x=时= 2、地表以下的岩层温度随着所处深度的变化而变化,在某个地点与的关系可以由公式来表示,
5、则随的增大而( )A、增大 B、减小 C、不变 D、以上答案都不对3、如图, 一圆锥高为6cm,当其底面半径从5cm变化到10cm时, 其体积从 变化到 。(保留)4、某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3),蓄水时间为t(时)(1)V与t之间的关系式是什么?(2)用表格表示当t从2变化到8时(每次增加1),相应的V值?(3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水?(4)当t逐渐增加时,V怎样变化?说说你的理由。4、三角形底边为8 cm,当它的高由小到大变化时,三角形的面积也随之发生了变化.1.在这个变化过程中,高是_,三角形面积是_.2.如果三角形的高为h
6、cm,面积S表示为_.3.当高由1 cm变化到5 cm时,面积从_cm2变化到_cm2.4.当高为3 cm时,面积为_cm2.5.当高为10 cm时,面积为_cm2.5出租车的车费y(元)随着路程x(km)变化而变化,有一种出租车的计费y与路程x间的关系可以近似地用关系式:y=1.2x+2.6(x2)来表示. 1.在上式中_是自变量,y是_.2.计算一下:当x=2时,y=_;当x=3时,y=_;当x=10时,y=_.3.小明家距火车站15 km,如果乘这种出租车需付_元车费.4.小明的爸爸付了7.4元车费,他乘出租车行了_km的路程.6、长方形的长为10 cm,宽为x cm.1.长方形的面积y
7、与x间的关系式是_.x123y802.填右表:3.当x每增加1时,y增加_.7、打时费随时间的变化而变化,有一种手机的费用y(元)与通话时间x(分)之间的关系可近似地表示为y=5+0.25x.小打了100分钟,费用为多少元?1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A、沙漠 B、体温 C、时间 D、骆驼2、正常人的体温一般在37左右,但一天中的不同时刻不尽相同。下图反映了一天24小时小明体温的变化情况,下列说法错误的是 ( )A 清晨5时体温最低 B 下午5时体温最高C 这一天中小明体温T(单位:)的围是36.5T37.5D 从5时至24时,小明体温一
8、直是升高的.3、下列图象中,哪个图象能大致刻画在太的照射下,太阳能热水器里面的水的温度与时间的关系.( ) 水温 水温 水温 水温0 时间 0 时间 0 时间 04.某市一天的温度变化如图所示,看图回答下列问题:(1)这一天中什么时间温度最高?是多少度?什么时间温度最低?是多少度?(2)在这一天中,从什么时间到什么时间温度开始上升?在这一天中,从什么时间到什么时间温度开始下降?5某种动物的体温随时间的变化图如图示:(1)一天之,该动物体温的变化围是多少?(2)一天,它的最低和最高体温分别是多少?是几时达到的(3)一天,它的体温在哪段时间下降(4)依据图象,预计第二天8时它的体温是多少?1、某种
9、长途收费方式为按时收费,前3分钟收费1.8元,以后每加一分钟收费1元,求:(1)当时间t3分钟时的费y (元)与t (分) 之间的关系.(2)画出对应的”机器图”.(3)计算当时间分别为5分、10分、30分、50分的费。1、在平地上投掷手榴弹,下面哪幅图可以大致刻画出手榴弹投掷过程中(落地前)速度变化情况( ) v v v vtttt A B C D2、某种储蓄的月利率是0.36%,现存入本金100元,本金与利息的和y(元)与所存月数x(月)之间的关系式为( )A、 B、C、 D、3、有一旅客携带了30公斤行从禄口国际机场乘飞机去,按民航规定,旅客最多可免费携带20公斤行,超重部分每公斤按飞机
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变量 之间 关系 知识点 常见 题型
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内