阅读类创新题-2022年中考数学大题狂练之压轴大题突破培优练(原卷版)【江苏专用】.docx
《阅读类创新题-2022年中考数学大题狂练之压轴大题突破培优练(原卷版)【江苏专用】.docx》由会员分享,可在线阅读,更多相关《阅读类创新题-2022年中考数学大题狂练之压轴大题突破培优练(原卷版)【江苏专用】.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年中考数学大题狂练之压轴大题培优突破练(江苏专用) 专题1新定义材料阅读类创新题本专题共精选2021、和2020和2019年中考真题14道,中考模拟题24道,6个题组,每个题组4道解答题,可作为课后作业或每日一练使用.【真题再现】1(2021江苏镇江中考真题)如图1,ABCDEF90,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABCDEF”若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线(活动)小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L
2、图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线请用无刻度的直尺在图1中作出其他的面积平分线(作出一种即可,不写作法,保留作图痕迹)(思考)如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ(填“是”或“不是”)L图形ABCDEF的面积平分线(应用)在L图形ABCDEF形中,已知AB4,BC6(1)如图4,CDAF1该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,B
3、G的长为(2)设t(t0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围2(2021江苏南京中考真题)在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图,圆锥的母线长为,B为母线的中点,点A在底面圆周上,的长为在图所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号)(2)图中的几何体由底面半径相同的圆锥和圆柱组成O是圆锥的顶点,点A在圆柱的底面圆周上设圆锥的母线长为l,圆柱的高为h蚂蚁从点A爬行到点O的最短路径的长为_(用含l,h的代数式表示)设的长为a,点B在母线上,圆柱的侧面展开图如图所示,在图
4、中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路3(2021江苏南通中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”例如,点是函数的图象的“等值点”(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C当的面积为3时,求b的值;(3)若函数的图象记为,将其沿直线翻折后的图象记为当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围4(2021全国九年级单元测试)在平面直角坐标系中,对于A、两点,若在y轴上存在点
5、T,使得,且,则称A、两点互相关联,把其中一个点叫做另一个点的关联点已知点、,点在一次函数的图像上(1)如图,在点、中,点M的关联点是_(填“B”、“C”或“D”);若在线段上存在点的关联点,则点的坐标是_;(2)若在线段上存在点Q的关联点,求实数m的取值范围;(3)分别以点、Q为圆心,1为半径作、若对上的任意一点G,在上总存在点,使得G、两点互相关联,请直接写出点Q的坐标5(2020年南通中考第27题)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线【理解运用】(1)如图,对余四边形ABCD中,AB5,BC6,CD4,连接AC若ACAB,求sinCAD的
6、值;(2)如图,凸四边形ABCD中,ADBD,ADBD,当2CD2+CB2CA2时,判断四边形ABCD是否为对余四边形证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于ABC内部,AEC90+ABC设AEBE=u,点D的纵坐标为t,请直接写出u关于t的函数解析式6(2020年常州中考第27题)如图1,I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交I于P、Q两点(Q在P、H之间)我们把点P称为I关于直线a的“远点“,把PQPH的值称为I关于直线a的“特征数”(1)如图2,在平面直角坐标系x
7、Oy中,点E的坐标为(0,4)半径为1的O与两坐标轴交于点A、B、C、D过点E画垂直于y轴的直线m,则O关于直线m的“远点”是点D(填“A”、“B”、“C”或“D”),O关于直线m的“特征数”为10;若直线n的函数表达式为y=3x+4求O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,2为半径作F若F与直线l相离,点N(1,0)是F关于直线l的“远点”且F关于直线l的“特征数”是45,求直线l的函数表达式7(2020年南京中考第27题)如图,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气试确定
8、燃气站的位置,使铺设管道的路线最短(1)如图,作出点A关于l的对称点A,线段AB与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的为了证明点C的位置即为所求,不妨在直线l上另外任取一点C,连接AC、BC,证明AC+CBAC+CB请完成这个证明(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域请分别给出下列两种情形的铺设管道的方案(不需说明理由)生态保护区是正方形区域,位置如图所示;生态保护区是圆形区域,位置如图所示8(2020年镇江中考第27题)【算一算】如图,点A、B、C在数轴上,B为AC的中点,点A表示3,点B表示1,则点C表示的数为5,AC长
9、等于8;【找一找】如图,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数22-1、22+1,Q是AB的中点,则点N是这个数轴的原点;【画一画】如图,点A、B分别表示实数cn、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);【用一用】学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校在这些条件下,a、m、b会有怎样的数量关系呢?爱思
10、考的小华想到了数轴,如图,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作8a,用点B表示用圆规在小华画的数轴上分别画出表示+(m+2b)、12a的点F、G,并写出+(m+2b)的实际意义;写出a、m的数量关系:m4a9(2020徐州)我们知道:如图,点B把线段AC分成两部分,如果BCAB=ABAC,那么称点B为线段AC的黄金分割点它们的比值为5-12(1)在图中,若AC20cm,则AB的长为(105-10)cm;(2)如图,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将
11、CB折叠到CE上,点B对应点H,得折痕CG试说明:G是AB的黄金分割点;(3)如图,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E(AEDE),连接BE,作CFBE,交AB于点F,延长EF、CB交于点P他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点请猜想小明的发现,并说明理由10(2020年扬州中考第27题)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3xy5,2x+3y7,求x4y和7x+5y的值本题常规思路是将两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,
12、常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得x4y2,由+2可得7x+5y19这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组2x+y=7,x+2y=8,则xy1,x+y5;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*yax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算已知3*515,4*728,那么1*11111(
13、2019年南京第27题)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)|x1x2|+|y1y2|【数学理解】(1)已知点A(2,1),则d(O,A)3函数y2x+4(0x2)的图象如图所示,B是图象上一点,d(O,B)3,则点B的坐标是(1,2)(2)函数y=4x(x0)的图象如图所示求证:该函数的图象上不存在点C,使d(O,C)3(3)函数yx25x+7(x0)的图象如图所示,D是图象上一点,求d(O
14、,D)的最小值及对应的点D的坐标【问题解决】(4)某市要修建一条通往景观湖的道路,如图,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)12(2019年南通第28题)定义:若实数x,y满足x22y+t,y22x+t,且xy,t为常数,则称点M(x,y)为“线点”例如,点(0,2)和(2,0)是“线点”已知:在直角坐标系xOy中,点P(m,n)(1)P1(3,1)和P2(3,1)两点中,点P2是“线点”;(2)若点P是“线点”,用含t的代数式表示mn,并求t的取值范围;(3)若点Q(n,m)是
15、“线点”,直线PQ分别交x轴、y轴于点A,B,当|POQAOB|30时,直接写出t的值13(2019年常州第26题)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”“算两次”也称做富比尼原理,是一种重要的数学思想【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n21+3+5+7+2n1;【运用】(3)n边形有n个顶
16、点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形当n3,m3时,如图3,最多可以剪得7个这样的三角形,所以y7当n4,m2时,如图4,y6;当n5,m3时,y9;对于一般的情形,在n边形内画m个点,通过归纳猜想,可得yn+2(m1)(用含m、n的代数式表示)请对同一个量用算两次的方法说明你的猜想成立14(2019年镇江第26题)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的O)人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一
17、段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角的大小是变化的【实际应用】观测点A在图1所示的O上,现在利用这个工具尺在点A处测得为31,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得为67PQ是O的直径,PQON(1)求POB的度数;(2)已知OP6400km,求这两个观测点之间的距离即O上AB的长(取3.1)【专项突破】【题组一】1.(2021海安市模拟)在平面直角坐标系xOy中,对于ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB为半径的P与ABC三条边的公共点个数之和不小于3,则称点P为ABC关于边BC的
18、“Math点”如图所示,点P即为ABC关于边BC的“Math点”已知点P(0,4),Q(a,0)(1)如图1,a4,在点A(1,0)、B(2,2)、C(23,23)、D(5,5)中,POQ关于边PQ的“Math点”为B,C(2)如图2,a=43,已知D(0,8),点E为POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;将POQ绕原点O旋转一周,直线y=-3x+b交x轴、y轴于点M、N,若线段MN上存在POQ关于边PQ的“Math点”,求b的取值范围2(2020建邺区二模)概念认识如果MN的两个端点M、N分别在AOB的两边上(不与点O重合),并且MN除端点外的所有点都在AOB
19、的内部,则称MN是AOB的“连角弧”初步思考(1)如图,AOB90,MN是以O为圆心,半径为1的一个“连角弧”图中MN的长是2以M、N为端点,弧长最长的“连角弧”的长度是32(2)AOB60,M是OA上一点,OM2,N是OB上一动点若MN是半圆,也是AOB的“连角弧”,求ON的长的取值范围深入研究(3)已知AOB,M、N分别在射线OA、OB上,ON4,MN是AOB的“连角弧”,且MN所在圆的半径为1,直接写出AOB的取值范围3(2019建邺区一模)我们定义:有一组对角相等的四边形叫做“等对角四边形”(1)如图,四边形ABCD内接于O,点E在CD的延长线上,且AEAD证明:四边形ABCE是“等对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏专用 阅读 创新 2022 年中 数学 大题狂练 压轴 突破 培优练 原卷版 江苏 专用
限制150内