全等三角形的提高拓展训练(学生版)1he全等三角形经典题型50题(含答案)26745.pdf
《全等三角形的提高拓展训练(学生版)1he全等三角形经典题型50题(含答案)26745.pdf》由会员分享,可在线阅读,更多相关《全等三角形的提高拓展训练(学生版)1he全等三角形经典题型50题(含答案)26745.pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全等三角形的提高拓展训练 知识点睛 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角(3)有公共边的,公共边常是对应边(4)有公共角的,公共角常是对应角(5)有对顶角的,对顶角常是对应角(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)要想正确地表示两个三角形全等,找出对应的元素是关键 全等三角形的判
2、定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等(3)边边边定理(SSS):三边对应相等的两个三角形全等(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础
3、 例题精讲 板块一、截长补短【例1】(06年北京中考题)已知ABC中,60A,BD、CE分别平分ABC和.ACB,BD、CE交于点O,试判断BE、CD、BC的数量关系,并加以证明【例2】如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作60DMN,射线MN与DBA外角的平分线交于点N,DM与MN有怎样的数量关系?【变式拓展训练】如图,点M为正方形ABCD的边AB上任意一点,MNDM且与ABC外角的平分线交于点N,MD与MN有怎样的数量关系?【例3】已知:如图,ABCD是正方形,FAD=FAE.求证:BE+DF=AE.【例4】以ABC的AB、AC为边向三角形外作等边ABD、A
4、CE,连结CD、BE相交于点O求证:OA平分DOE 如图所示,ABC是边长为1的正三角形,BDC是顶角为120的等腰三角形,以D为顶点作一个60的MDN,点M、N分别在AB、AC上,求AMN的周长 NCDEBMADOECBANEBMAD【例5】五边形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180,求证:AD平分CDE 板块二、全等与角度【例 7】如图,在ABC中,60BAC,AD是BAC的平分线,且ACABBD,求ABC的度数.【例 8】在等腰ABC中,ABAC,顶角20A,在边AB上取点D,使ADBC,求BDC.【例 9】(“勤奋杯”数学邀请赛试题)如图所示,在ABC中,
5、ACBC,20C,又M在AC上,N在BC上,且满足50BAN,60ABM,求NMB.全等三角形证明经典 50 题(含答案)1.已知:AB=4,AC=2,D 是 BC 中点,AD 是整数,求 AD 延长 AD 到 E,使 DE=AD,则三角形 ADC 全等于三角形 EBD 即 BE=AC=2 在三角形 ABE 中,AB-BEAEAB+BE 即:10-22AD10+24AD6 又 AD 是整数,则 AD=5 2.已知:D 是 AB 中点,ACB=90,求证:12CDAB 3.已知:BC=DE,B=E,C=D,F 是 CD 中点,求证:1=2 D A B C A D B C CEDBA证明:连接 B
6、F 和 EF。因为 BC=ED,CF=DF,BCF=EDF。所以三角形 BCF 全等于三角形 EDF(边角边)。所以 BF=EF,CBF=DEF。连接 BE。在三角形 BEF 中,BF=EF。所以EBF=BEF。又因为ABC=AED。所以ABE=AEB。所以 AB=AE。在三角形 ABF 和三角形 AEF 中,AB=AE,BF=EF,ABF=ABE+EBF=AEB+BEF=AEF。所以三角形 ABF 和三角形 AEF 全等。所以BAF=EAF(1=2)。4.已知:1=2,CD=DE,EF/AB,求证:EF=AC 证明:A B C D E F 2 1 B A C D F 2 1 E 过 E 点,
7、作 EG/AC,交 AD 延长线于 G 则DEG=DCA,DGE=2 又CD=DE ADCGDE(AAS)EG=AC EF/AB DFE=1 1=2 DFE=DGE EF=EG EF=AC 5.已知:AD 平分BAC,AC=AB+BD,求证:B=2C 证明:在 AC 上截取 AE=AB,连接 ED AD 平分BAC EAD=BAD 又AE=AB,AD=AD AEDABD(SAS)AED=B,DE=DB AC=AB+BD AC=AE+CE CE=DE C D B A C=EDC AED=C+EDC=2C B=2C 6.已知:AC 平分BAD,CEAB,B+D=180,求证:AE=AD+BE 证明
8、:在 AE 上取 F,使 EFEB,连接 CF 因为 CEAB 所以CEBCEF90 因为 EBEF,CECE,所以CEBCEF 所以BCFE 因为BD180,CFECFA180 所以DCFA 因为AC 平分BAD 所以DACFAC 又因为 ACAC 所以ADCAFC(SAS)所以 ADAF 所以 AEAFFEADBE 12.如图,四边形 ABCD 中,ABDC,BE、CE 分别平分ABC、BCD,且点 E 在 AD 上。求证:BC=AB+DC。证明:在 BC 上截取 BF=BA,连接 EF.ABE=FBE,BE=BE,则ABEFBE(SAS),EFB=A;AB 平行于 CD,则:A+D=18
9、0;又EFB+EFC=180,则EFC=D;又FCE=DCE,CE=CE,故FCEDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.13.已知:AB/ED,EAB=BDE,AF=CD,EF=BC,求证:F=C AB/ED,AE/BD 推出 AE=BD,又有 AF=CD,EF=BC 所以三角形 AEF 全等于三角形 DCB,所以:C=F 14.已知:AB=CD,A=D,求证:B=C 证明:设线段 AB,CD 所在的直线交于 E,(当 ADBC 时,E 点是射线 AB,DC 的交点)。则:AED 是等腰三角形。所以:AE=DE 而 AB=CD 所以:BE=CE(等量加等量,或等量减
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 提高 拓展 训练 学生 he 经典 题型 50 答案 26745
限制150内