2022年因式分解知识点归纳总结二 .docx
《2022年因式分解知识点归纳总结二 .docx》由会员分享,可在线阅读,更多相关《2022年因式分解知识点归纳总结二 .docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品_精品资料_因式分解学问点归纳总结二概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.意义: 它是中学数学中最重要的恒等变形之一,它被广泛的应用于初等数学之中,是我们解决很多数学问题的有力工具.因式分解方法敏捷,技巧性强,学 习这些方法与技巧,不仅是把握因式分解内容所必需的,而且对于培育同学的解 题技能,进展同学的思维才能,都有着非常特殊的作用.学习它,既可以复习的 整式四就运算,又为学习分式打好基础.学好它,既可以培育同学的观看、留意、运算才能,又可以提高同学综合分析和解决问题的才能.分解因式与整式乘法互为逆变形.因式分解的方法因式分解没有普
2、遍的方法,中学数学教材中主要介绍了提公因式法、公式法.而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法, 长除法,除法等.留意三原就1 分解要完全2 最终结果只有小括号3 最终结果中多项式首项系数为正(例如:-3x2+x=-x3x-1)基本方法提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式.假如一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.可编辑资料 - - - 欢迎下载精品_精品资料_详细方法: 当各项系数都是整数时
3、,公因式的系数应取各项系数的最大公约数.字母取各项的相同的字母,而且各字母的指数取次数最低的.取相同的多项 式,多项式的次数取最低的.假如多项式的第哪一项负的,一般要提出“-”号,使括号内的第一项的系数成为正数. 提出 “-”号时,多项式的各项都要变号.口诀:找准公因式,一次要提净.全家都搬走,留1 把家守.提负要变号, 变形看奇偶.例如: -am+bm+cm=-ma-b-c.ax-y+by-x=ax-y-bx-y=x-ya-b.留意:把2a2+1/2变成 2a2+1/4不叫提公因式公式法假如把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式 : a2 -b 2=a+b
4、a-b.完全平方公式 : a 22ab b 2 a b 2 .留意:能运用完全平方公式分解因式的多项式必需是三项式,其中有两项能写成两个数 或式 的平方和的形式,另哪一项这两个数或式 的积的 2 倍.立方和公式 : a3 +b 3 =a+ba2 -ab+b 2 .立方差公式 : a3 -b 3=a-ba2 +ab+b 2 .完全立方公式 : a 33a 2 b 3ab 2b 3=a b 3 333222公式: a +b +c +3abc=a+b+ca+b +c -ab-bc-ca222例如: a+4ab+4b=a+2b.( 3 )分解因式技巧1. 分解因式与整式乘法是互为逆变形.2. 分解因式
5、技巧把握:等式左边必需是多项式.分解因式的结果必需是以乘积的形式表示.可编辑资料 - - - 欢迎下载精品_精品资料_每个因式必需是整式,且每个因式的次数都必需低于原先多项式的次数.分解因式必需分解到每个多项式因式都不能再分解为止.注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑.3. 提公因式法基本步骤:( 1 )找出公因式.( 2 )提公因式并确定另一个因式:第一步找公因式可根据确定公因式的方法先确定系数在确定字母.其次步提公因式并确定另一个因式,留意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项
6、,求的剩下的另一个因式.提完公因式后,另一因式的项数与原多项式的项数相同.竞赛用到的方法分组分解法分组分解是解方程的一种简洁的方法,我们来学习这个学问.能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.比如:ax+ay+bx+by=ax+y+bx+y=a+bx+y我们把 ax 和 ay 分一组, bx 和 by 分一组,利用乘法安排律,两两相配,立刻解除了困难.同样,这道题也可以这样做.ax+ay+bx+by=xa+b+ya+b可编辑资料 - - - 欢迎下载精品_精品资料_=a+bx+y几道例题:1.5ax+5bx+3ay+3by解法: =5xa+b+3ya+b
7、=5x+3ya+b说明:系数不一样一样可以做分组分解,和上面一样,把5ax 和 5bx 看成整体,把 3ay 和 3by 看成一个整体,利用乘法安排律轻松解出.2.x3 -x 2+x-1解法: =x 3-x 2 +x-1=x 2 x-1+x-1=x-1x 2 +1利用二二分法,提公因式法提出x2 ,然后相合轻松解决.3.x2 -x-y 2 -y解法: =x 2-y 2 -x+y=x+yx-y-x+y=x+yx-y-1利用二二分法,再利用公式法a2-b2=a+ba-b,然后相合解决.十字相乘法这种方法有两种情形. x² + p+q x+pq型的式子的因式分解这类二次三项式的特点是:二次
8、项的系数是1.常数项是两个数的积.一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1 的二次三项式因式分解:x²+ p+q x+pq=x+px+q kx²+ mx +n 型的式子的因式分解假如有 k=ac , n=bd ,且有 ad+bc=m时,那么 kx²+ mx + n=ax + bcx +d 可编辑资料 - - - 欢迎下载精品_精品资料_图示如下:c d例如:由于1 -37 2-3 7=-21 , 12=2 ,且 2-21=-19,所以 7x²-19x-6=7x+2x-3十字相乘法口诀:首尾分解,交叉相乘,求和凑中拆项、添项法
9、这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项), 使原式适合于提公因式法、运用公式法或分组分解法进行分解.要留意,必需在与原多项式相等的原就下进行变形.例如: bcb+c+cac-a-aba+b=bcc-a+a+b+cac-a-aba+b=bcc-a+cac-a+bca+b-aba+b=cc-ab+a+ba+bc-a=c+bc-aa+b配方法对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法.属于拆项、补项法的一种特别情形.也要留意必需在与原多项式相等的原就下进行变形.例如: x² + 3x-40=x
10、²+ 3x+2.25-42.25=x+1.5²-6.5²可编辑资料 - - - 欢迎下载精品_精品资料_=x+8x-5应用因式定理对于多项式 fx=0 ,假如 fa=0 ,那么 fx 必含有因式 x-a 例如: fx=x²+ 5x+6 , f-2=0 ,就可确定 x+2 是 x² + 5x+6 的一个因式. 事实上, x² + 5x+6=x+2x+3 留意: 1、对于系数全部是整数的多项式,如X=q/p ( p,q 为互质整数时)该多项式值为零,就q 为常数项约数,p 最高次项系数约数.2 、对于多项式fa=0,b为最高次项系数,c
11、为常数项,就有a 为 c/b 约数换元法有时在分解因式时,可以挑选多项式中的相同的部分换成另一个未知数,然后进行因式分解,最终再转换回来,这种方法叫做换元法.留意 : 换元后勿忘仍元.例如在分解 x²+ x+1x²+ x+2-12时,可以令 y=x²+x, 就原式 =y + 1y + 2-12=y²+ 3y + 2-12=y²+ 3y-10=y +5y-2=x²+x+5x²+x-2=x²+x+5x+2x-1 也可以参看右图.求根法可编辑资料 - - - 欢迎下载精品_精品资料_令多项式fx=0, 求出其根为 x1
12、, x2 , x3 , xn ,就该多项式可分解为fx=x-x1x-x2x-x3 x -xn例如在分解 2x4+7x3-2x2-13x+6时,令 2x4+7x3-2x2-13x+6=0, 就通过综合除法可知,该方程的根为0.5, -3 , -2 , 1所以 2x4+7x3-2x2-13x+6=2x-1x+3x+2x-1图象法令 y=fx ,做出函数 y=fx 的图象,找到函数图像与X 轴的交点x1,x2,x3, xn ,就多项式可因式分解为fx=fx=x-x1x-x2x-x3 x -xn 与方法相比,能躲开解方程的繁琐,但是不够精确.例如在分解 x3+2x2-5x-6时,可以令 y=x3;+2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年因式分解知识点归纳总结二 2022 因式分解 知识点 归纳 总结
限制150内