七年级下册数学优秀教案【优秀8篇】.docx
《七年级下册数学优秀教案【优秀8篇】.docx》由会员分享,可在线阅读,更多相关《七年级下册数学优秀教案【优秀8篇】.docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级下册数学优秀教案【优秀8篇】七年级下册数学优秀教案 篇一 【学习目标】 1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验。 2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较。 【学习重点】 利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小。 【学习难点】 两个负数大小的比较。 行为提示:创景设疑,帮助学生知道本节课学什么。 行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案。 教会学生落实重点。 情景导入生成问题 旧知回顾: 1.什么是绝对值? 答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值。 2.正数、负数、0的绝对值分
2、别是什么? 答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 自学互研生成能力 知识模块一用数轴比较有理数的大小 阅读教材P14P15的内容,回答下列问题: 问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大? 答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。正数大于0,0大于负数,正数大于负数。 方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大。 学习笔记: 行为提示:教会学生怎么交流。先对学,再群学。充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学帮扶学组内群学来开展).在群学后期教师可有意
3、安排每组展示问题,并给学生板书题目和组内演练的时间。典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是(A) A.abcB.acb C.bca D.cba 仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是(C) A.-aC.a-1-a D.a-a-1 仿例2:把下列各数在数轴上表示出来,并用“”连接各数。 -1.5,-0.5,-3.5,-5. 解:将这些数在数轴上表示出来,如图: 从数轴上可看出:-5-3.5-1.5-0.5. 知识模块二用法则比较有理数的大小 阅读教材P15的内容,回答下列问题: 问题:两个负数怎样比较大小? 答:可在数轴上
4、比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较。 典例:比较大小: (1)-2.11;(2)-3.2-4.3; (3)-1213; (4)-140. 仿例1:比较-12、-13、14的大小结果正确的是(A) A.-12-1314B.-1214-13 C.14-13-12 D.-13-1214 仿例2:比较下列各对数的大小: (1)-(-3)与|-2|; 解:-(-3)=3,|-2|=2, -(-3)|-2|;(2)-(-6)与|-6|. 解:-(-6)=6,|-6|=6, -(-6)=|-6|. 变例:整数x满足|x|3,则x=-2、-1、0、1、2,负整数x满足3|x|6,则x=
5、-4、-5、-6. 交流展示生成新知 1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑。 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”。 知识模块一用数轴比较有理数的大小 知识模块二用法则比较有理数的大小 检测反馈达成目标 【当堂检测】见所赠光盘和学生用书 【课后检测】见学生用书 课后反思查漏补缺 七年级数学下册教案 篇二 【教材分析】 这部分内容是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前
6、启后的作用,是小学阶段学习比例初步知识 .hu 的一项重要内容。 【教学目标】 1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。 2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。 3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。 【教学重点】探索并掌握比例的基本性质。 【教学难点】根据乘法等式写出正确的比例。 【设计理念】 数学课程标准指出:数学课堂教学要从学生已有的知识经验
7、出发,创设有助于学生自主学习、合作交流的情境,让学生经历观察、操作、归纳、类比、猜想、反思等数学活动,获得基本的数学知识与技能,进一步激发学生的兴趣,发展学生的思维能力。本节课的教学紧紧围绕这一理念,先让学生学习比例的各部分名称,再探究比例的基本性质,最后通过简炼的分层练习,深化比例的基本性质,体验比例基本性质的应用价值,渗透假设、验证、优化等解决问题的策略和方法,感受“一一对应”和“变与不变”的思想。 【教学预设】 一、认识比例各部分的名称 1、呈现:4:5和8:10 (1)认识吗?叫什么? (2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10) (3)求比值,判断
8、两个比能否组成比例。 2、介绍比例各部分的名称 4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。 3、你能说出下面比例的内项和外项各是多少吗? (1)1.4: =:5 (2) = 【设计意图:简洁的情境,简单的问答,准确定位教学的起点,沟通比例各部分的名称,嫁接新知探究的支点。】 二、探究比例的基本性质 1、猜数 (1)老师这里也有一个比例“12=2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,) (2)追问:正确吗?为什么?(求比值判断) (3)还有不
9、同答案吗? (4)你能举出项不是整数的例子吗? (5)这样的例子举得完吗? 2、猜想 仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换) 3、验证 (1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证) (2)你觉得应该怎样举例呢? 示范:任意写一个简单的比;求出比值;根据比值写出另一个比的一项,求出另一项;组成比例;算出外项的积和內项的积。 (3)合作要求 1)前后4个同学为一个小组; 2)每个同学写出一个比例,小组内交换验证。 3)通过举例验证,你们能得出什么结论? 4、归纳 (1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等
10、于两个內项的积? (2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质) 5、完善 (1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad) (2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢? (3)比例中两个比的后项都不能为0。 6、如果比例写成分数形式=,这怎么相乘?(交叉相乘) 【设计意图:不完整的比例激发学生根据比例的意义猜数的兴趣,教师举例示范,为学生小组合作举例验证比例的基本性质搭建支点,意在让学生经历“猜
11、数猜想验证归纳完善”的知识探究过程,激发学生的探究欲望,让学会学习的方法,提高学习能力。】 三、巩固练习,应用比例的基本性质 1、判断下面哪组中的两个比可以组成比例。 示范:6:3和8:5 (1)1.2:和:5 (2):和: (3)和 学法指导:假设两个比能组成比例,根据比例的基本性质,分别算出两个外项和两个內项的积,再肯定两个比能否组成比例。 (1)先让学生尝试判断,再交流,明确思考方法。 (2)还可以用什么方法来判断?用求比值的方法判断1.2:和:5能否组成比例可以吗? (3)这两种方法,你更喜欢哪种?为什么? 2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积
12、,你会写比例吗? 六(3)班智聪同学根据“29=36”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。 追问:你为什么写得那么块?有什么窍门吗? 补问:根据这个乘法等式,一共可以写多少个比例? 3、如果a2=b4,则a:b=( ):( ); 如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么? 那么a、b还可能是多少?你发现了什么? 4、猜猜我是谁? 6:( )=5: 4 延伸:如果把“( )”改为“x”就是我们下节课要学习的知识:解比例。 【设计意图:通过分层练习,巩固对比例基本性质的掌握,体验比例基本性质的应用价值,促进所有学生都能在动静结合的练习过程中获得发展,不同学生获得
13、不同程度的发展。同时渗透假设、验证、有序思考的解题策略和方法,体验解决问题方法的多样性和优化策略,感受“一一对应”和“变与不变”的数学思想。】 四、分享收获畅谈感想 这节课,我们学习了什么?我们是怎样探究比例的基本性质的? 五、板书设计 七年级数学下册教案 篇三 教学目标 1、经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念 2、了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论、 3、会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线、 重点: 探索和掌握平行公理及其推论、 难点: 对平行线本质属
14、性的理解,用几何语言描述图形的性质、 教学过程 一、创设问题情境 1、复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系? 学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答、教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗? 2、教师演示教具、 顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置? 3、教师组织学生交流并形成共识、 转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点
15、,然后交点变为在A点的右边,逐步远离A点、继续转动下去,b与a的交点就会从A点的左边又转动A点的左边可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点、 二、平行线定义表示法 1、结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行、换言之,同一平面内,不相交的两条直线叫做平行线、 直线a与b是平行线,记作“”,这里“”是平行符号、 教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线、 2、同一平面内,两条直线的位置关系 教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系
16、、 在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一、即两条直线不相交就是平行,或者不平行就是相交、 三、画图、观察、归纳概括平行公理及平行公理推论 1、在转动教具木条b的过程中,有几个位置能使b与a平行? 本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行、 2、用直线和三角尺画平行线、 已知:直线a,点B,点C、 (1)过点B画直线a的平行线,能画几条? (2)过点C画直线a的平行线,它与过点B的平行线平行吗? 3、通过观察画图、归纳平行公理及推论、 (1)由学生对照垂线的第一性质说出画图所得的结论、 (2)在学生充分交流后,教师板书、 平行公理:
17、经过直线外一点,有且只有一条直线与这条直线平行、 (3)比较平行公理和垂线的第一条性质、 共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的 不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外、 4、归纳平行公理推论、 (1)学生直观判定过B点、C点的a的平行线b、c是互相平行、 (2)从直线b、c产生的过程说明直线b直线c、 (3)学生用三角尺与直尺用平推方验证bc、 (4)师生用数学语言表达这个结论,教师板书、 结果两条直线都与第三条直线平行,那么这条直线也互相平行、 结合图形,教师引导学生用符号语言表达
18、平行公理推论: 如果ba,ca,那么bc、 (5)简单应用、 练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由、 本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范、 四、作业:课本P16、7,P17、11、 七年级下册数学教案 篇四 教学目标: 1、经历数据离散程度的探索过程 2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。 教学重点:会计算某些数据的极差、标准差和方差。 教学难点:理解数据离散程度与三个差之间的关系。 教学准备:计算器,投影片等 教学过程: 一、创设情境 1、投影课本P138
19、引例。 (通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差) 2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。 二、活动与探究 如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图) 问题:1、丙厂这20只鸡腿质量的平均数和极差是多少? 2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。 3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优秀8篇 年级 下册 数学 优秀 教案
限制150内