《小学四年级奥数(27到32).pptx》由会员分享,可在线阅读,更多相关《小学四年级奥数(27到32).pptx(75页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二十七周 较复杂的和差倍问题第1页/共75页专题简析:前面我们学习了和倍、差倍、和差三种应用题,有的题目需要通过转化而成为和倍、差倍、和差问题,这类问题叫做复杂的和差倍问题。解答较复杂的和差倍问题,需要我们从整体上把握住问题的本质,将题目进行合理的转化,从而将较复杂的问题转化为一般和倍、差倍、和差应用题来解决。第2页/共75页例1:两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍。两箱原来各有茶叶多少千克?分析与解答:由“两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍”可求出现在甲箱中有茶叶96(13)=24千克。由此可求
2、出甲箱原来有茶叶2412=36千克,乙箱原来有茶叶9636=60千克。第3页/共75页练 习 一1,书架的上、下两层共有书180本,如果从上层取下15本放入下层,那么下层的本数正好是上层的2倍。两层原来各有书多少本?2,甲、乙两人共储蓄2000元,甲取出160元,乙又存入240元,这时甲储蓄的钱数比乙的2倍少20元。甲、乙两人原来各储蓄多少元?3,某畜牧场共有绵羊和山羊3561只,后来卖了60只绵羊,又买来山羊100只,现在绵羊的只数比山羊的2倍多1只。原来绵羊和山羊各有多少只?第4页/共75页例2:甲、乙、丙三个同学做数学题,已知甲比乙多做5道,丙做的是甲的2倍,比乙多做20道。他们一共做了
3、多少道数学题?分析与解答:甲比乙多5道,丙比乙多20道,丙做的是甲的2倍,因此,205=15道是丙的一半,也就是甲做的道数。丙做了152=30道,乙做了155=10道。他们共做了:(205)(12)(205)5=55道。第5页/共75页练 习 二1,某厂一季度创产值比三季度多2万元,二季度的产值是一季度产值的2倍,比三季度产值多42万元。三个季度共创产值多少万元?2,甲、乙、丙三个人合做一批零件,甲比乙多做12个,丙做的比甲的2倍少20个,比乙做的多38个。这批零件共有多少个?3,果园里的苹果树是桃树的3倍,管理员每天能给25棵苹果树和15棵桃树洒农药。几天后,当桃树喷完农药时,苹果树还有14
4、0棵没有喷药。果园里共有多少棵树?第6页/共75页例3:某工厂一、二、三车间共有工人280人,第一车间比第二车间多10人,第二车间比第三车间多15人。三个车间各有工人多少人?分析与解答:这是多量的和差问题,解题的时候确定的标准不同,解法也就不同。如果以第二车间的人数为标准,第一车间减少10人,第三车间增加15人,那么2801015=285人是第二车间人数的3倍,由此可以求出第二车间有2853=95人,第一车间有9510=105人,第三车间有9515=80人。第7页/共75页练 习 三1,一个三层书架共放书168本,上层比中层多12本,下层比中层少6本。三层各放书多少本?2,一个三层柜台共放皮鞋
5、120双,第一层比第二层多放4双,第二层比第三层多7双,三层各多皮鞋多少双?3,四个数的和是152,第一个数比第二个数多16,比第三个数多20,比第四个数少12。第一个数和第四个数是多少?第8页/共75页例4:两个数相除,商是4,被除数、除数、商的和是124。被除数和除数各是多少?分析与解答:从124里去掉商,是1244=120,它是除数的14=5倍,除数是1205=24,被除数是244=94。第9页/共75页练 习 四1,在一个除法算式中,被除数、除数、商的和是123。已知商是3,被除数和除数各是多少?2,两个数相除,商是5,余数是7,被除数、除数、商、余数的和是187,求被除数。3,两个数
6、相除,商是17,余数是8,被除数、除数、商和余数的和是501,求被除数和除数是多少。第10页/共75页例5:甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍。甲、乙原来各有存款多少元?分析与解答:由“乙存入110元,甲取出110元”,可知乙存入110元后相当于甲存款数的3倍,取出1103=330元;而由甲的存款是乙的4倍,可知甲原有存款的3倍相当于乙原有存款的43=12倍,乙现在存入110元后相当于甲原有的12倍,取1103=330元,所以,330110=440元,相当于乙原有的121=11倍。所以,乙原有存款44011=40元,甲原有存款404=160元。第11
7、页/共75页练 习 五1,甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍。甲、乙原来各有存款多少元?2,刘叔叔的存款是李叔叔的6倍,如果刘叔叔取出1100元,李叔叔存入1100元,那么刘叔叔的存款是李叔叔的2倍。刘叔叔和李叔叔原来各有存款多少元?3,有大、中、小三筐菠萝,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍。大、中、小三筐各装菠萝多少千克?第12页/共75页第二十八周 周期问题第13页/共75页专题简析:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。我们把这种特殊的规律性问题称为周期问题。解答周期问
8、题的关键是找规律,找出周期。确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。第14页/共75页例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。(1)(2)分析与解答:第(1)题排列规律是“”两个图形重复出现,202=10,即“”重复出现10次,所以第20个图形是。第(2)题的排列规律是“”三个图形重复出现,203=62,即“”重复出现6次后又出现了两个图形“”,所以第20个图形是。第15页/共75页练 习 一(
9、1)第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一第2001个字是什么字?(3)公园门口挂了一排彩灯泡按“二红三黄四蓝”重复排列,第63只灯泡是什么颜色?第112只呢?第16页/共75页例2:有一列数,按5、6、2、4、5、6、2、4排列。(1)第129个数是多少?(2)这129个数相加的和是多少?分析与解答:(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则1294=321,可知有32个“5、6、4、2”还剩一个。所以第129个数是5。(2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是1
10、7325=549。第17页/共75页练 习 二1,有一列数:1,4,2,8,5,7,1,4,2,8,5,7(1)第58个数是多少?(2)这58个数的和是多少?2,小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?3,河岸上种了100棵桃树,第一棵是蟠桃,后面两棵是水蜜桃,再后面三棵是大青桃。接下去一直这样排列。问:第100棵是什么桃树?三种树各有多少棵?第18页/共75页例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45
11、6 7 89分析与解答:从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以根据这些数除以4所得的余数来分析。394=93 884=22所以,39应排在第10个循环的第三个字母C下面,88应排在第22个循环的第四个字母D下面。第19页/共75页练 习 三 1,假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 122,2001个学生按下列方法编号排成五列:一 二 三 四 五1 2 3 4 59 8 7 610 11 12 1317 16 15 14 问:最后一个学生应该排在第几列?第20页/共7
12、5页例4:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?分析与解答:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法。(221)7=3,没有余数,该月22日仍是星期二;(281)7=36,从星期三开始(包括星期三)往后数6天,28日是星期一。(2)1991年、1993年是平年,1992年是闰年,从1991年1月2日到1994年1月1日共1096天,10967=1564,从星期三开始往后数4天,1994年1月1日是星期六。第21页/共75页练 习 四1,1990年9月22日是星期六,199
13、1年元旦是星期几?2,1989年12月5日是星期二,那么再过10年的12月5日是星期几?3,1996年8月1日是星期四,1996年的元旦是星期几?第22页/共75页例5:我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年。如果公元1年属鸡年,那么公元2001年属什么年?分析与解答:一共有12种动物,因此12为一个循环,为了便于思考,我们把“狗、猪、鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡”看作一个循环,从公元2年到公元2001年共经历了2000年(算头不算尾),200012=1668,从狗年开始往后数8年,
14、公元2001年是蛇年。第23页/共75页练 习 五我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号。1,如果公元3年属猪年,那么公元2000年属什么年?2,如果公元6年属虎年,那么公元21世纪的第一个虎年是哪一年?3,公元2001年属蛇年,公元2年属什么年?第24页/共75页第二十九周 行程问题(一)第25页/共75页专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度时间”来
15、思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。第26页/共75页例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇?分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短64=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10千米。因此,两人20(64)=2小时后相遇。第27页/共75页练 习 一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶1
16、5千米,经过6小时两船在途中相遇。两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。两车出发后多少小时相遇?第28页/共75页例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为
17、止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000(11090)=10分钟。所以狗共行了50010=5000米。第29页/共75页练 习 二1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?2,A、B两地相距400千米,甲、乙两车同时从两地相
18、对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?第30页/共75页例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析与解答:这是一道相背问题。所谓相背问题是指两个运动的物体作背向运动的问题。在相背问题中,相遇问
19、题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是5418=36千米,而两人每小时共行75=12千米。要求几小时能行完36千米,就是求36千米里面有几个12千米。所以,3612=3小时。第31页/共75页练 习 三1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。经过3小时后,两人相隔60千米。南北两庄相距多少千米?3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。两人的速度各是多少?第
20、32页/共75页例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。几小时后甲可以追上乙?分析与解答:这是一道追及问题。根据题意,甲追上乙时,比乙多行了24千米(路程差)。甲骑自行车每小时行13千米,乙步行每小时走5千米,甲每小时比乙多行135=8千米(速度差),即甲每小时可以追上乙8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米。因此,248=3小时甲可以追上乙。第33页/共75页练 习 四1,甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米。几小时后甲可追上乙?2,解放军某部
21、从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络。多长时间后,通讯员能赶上队伍?3,小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。3分钟后两人相距多少米?第34页/共75页例5:甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?分析与解答:这是一道封闭线路上的追及问题。甲和乙同时同地起跑,方向一致。因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是
22、400米。根据“路程差速度差=追及时间”即可求出甲追上乙所需的时间:400(290270)=20分钟。第35页/共75页练 习 五1,一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?2,光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑。亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?3,甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍。现在甲在乙后面250米,乙追上甲需要多少分钟?第36页/共75页第三十周 用假设法解题第37页/共75页专题简析
23、:假设法是一种常用的解题方法。“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。第38页/共75页例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有多少只?分析与解答:鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。假设全是鸡,那么相应的脚的总数
24、应是235=70只,与实际相比,减少了9470=24只。减少的原因是把一只兔当作一只鸡时,要减少42=2只脚。所以兔有242=12只,鸡有3512=23只。第39页/共75页练 习 一1,鸡与兔共有30只,共有脚70只。鸡与兔各有多少只?2,鸡与兔共有20只,共有脚50只。鸡与兔各有多少只?3,鸡与兔共有100只,鸡脚比兔脚多80只。鸡与兔各有多少只?第40页/共75页例2:面值是2元、5元的人民币共27张,全计99元。面值是2元、5元的人民币各有多少张?分析与解答:这道题类似于“鸡兔同笼”问题。假设全是面值2元的人民币,那么27张人民币是227=54元,与实际相比减少了9954=45元,减少
25、的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少52=3元,所以,面值是5元的人民币有453=15张,面值2元的人民币有2715=12张。第41页/共75页练 习 二1,孙佳有2分、5分硬币共40枚,一共是1元7角。两种硬币各有多少枚?2,50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。问大船和小船各几只?3,小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。小明共得60分,他猜对了几道?第42页/共75页例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。每辆大车比小车多装4吨,这批水泥有多少吨?分析与解答:求
26、出大车每辆各装多少吨,是解题关键。如果用36辆小车来运,则剩436=144吨,需4536=9辆小车来运,这样可以求出每辆小车的装载量是1449=16吨,所以,这批水泥共有1645=720吨。第43页/共75页练 习 三1,一批货物用大卡车装要16辆,如果用小卡车装要48辆。已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2,有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3,一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?第44页/共75页例4:某玻璃杯厂要为商场运送1000个玻璃杯,
27、双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。结果运到目的地后结算时,玻璃杯厂共得运费920元。求打碎了几个玻璃杯?分析与解答:假设1000个玻璃杯全部运到并完好无损,应得运费11000=1000元,实际上少得1000920=80元,这说明运输过程中打碎了玻璃杯。每打碎一个,不但不给运费还要赔偿3元,这样玻璃杯厂就少收入13=4元。又已求出共少收入80元,所以打碎的玻璃杯数为804=20个。第45页/共75页练 习 四1,搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。但打碎一只,不仅不给搬运费还要赔5角。如果运完后共得运费260元,那么,搬运中打碎了多少只?2,
28、某次数学竞赛共20道题,评分标准是每做对一题得5分,每做错一题倒扣1分。刘亮参加了这次竞赛,得了64分。刘亮做对了多少道题?3,某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一道或不做倒扣4分。小华在这次竞赛中共得66分,他做对了几道题?第46页/共75页例5:某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元。其中40元和50元的张数相等,每种票各售出多少张?分析与解答:因为“40元和50元的张数相等”,所以可以把40元和50元的门票都看作45元的门票,假设这200张门票都是45元的,应收入45200=9000元,比实际多收入90007800=1200元,
29、这是因为把30元的门票都当作45元来计算了。因此30元的门票有1200(4530)=80张,40元和50元的门票各有(20080)2=60张。第47页/共75页练 习 五1,某场球赛售出40元、30元、50元的门票共400张,收入15600元。其中40元和50元的张数相等,每种门票各售出多少张?2,数学测试卷有20道题,做对一题得7分,做错一题倒扣4分,不做得0分。红红得了100分,她几道题没做?3,有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?第48页/共75页第三十一周 还原问题第
30、49页/共75页专题简析:已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。解决这类问题通常运用倒推法。遇到比较复杂的还原问题,可以借助画图和列表来解决这些问题。第50页/共75页例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。小刚的奶奶今年多少岁?分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是10010=10岁;加上2之后是10岁,没有加2之前应是102=8岁;没有缩小9倍之前应是89=72岁;减去7之后是72岁,没有减去7前应是727=79岁。所以,小
31、刚的奶奶今年是79岁。第51页/共75页练 习 一1,在里填上适当的数。20816=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60。这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。”王老师今年多少岁?第52页/共75页例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。这个商场原来有洗衣机多少台?分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即9520=115台正好是上午售后剩下的一半,那么115
32、2=230台就是上午售出后剩下的台数。而230台和10台合起来,即23010=240台又正好是总数的一半。那么,2402=480台就是原有洗衣机的台数。第53页/共75页练 习 二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。爸爸买了多少个橘子?3,某水果店卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉了剩下的一半多1个,第三次卖掉第二次卖后剩下的一半多1个,这时只剩下一外菠萝。三次共卖得48元,求每
33、个菠萝多少元?第54页/共75页例3:小明、小强和小勇三个人共有故事书60本。如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。这三个人原来各有故事书多少本?分析与解答:不管这三个人如何借来借去,故事书的总本数是60本,根据结果三个人故事书本数相同,可以求最后三个人每人都有故事书603=20本。如果小强不借给小勇5本,那么小强有205=25本,小勇有205=15本;如果小强不向小明借3本,那么小强有253=22本,小明有203=23本。第55页/共75页练 习 三1,甲、乙、丙三个小朋友共有贺年卡90张。如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同
34、。问三人原来各有贺年卡多少张?2,小红、小丽、小敏三个人各有年历片若干张。如果小红给小丽13张,小丽给小敏23张,小敏给小红3张,那么他们每人各有40张。原来三个人各有年历片多少张?3,甲、乙、丙、丁四个小朋友有彩色玻璃弹子10颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,四人的个数相等。他们原来各有弹子多少颗?第56页/共75页例4:甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。问两桶油原来各有多少千克?分析与解答:如果后来乙桶不倒出和甲桶同样多的油放入甲桶,甲桶内应有油362=18千克,乙桶应有油361
35、8=54千克;如果开始不从甲桶倒出和乙桶同样多的油倒入乙桶,乙桶原有油应为542=27千克,甲桶原有油1827=45千克。第57页/共75页练 习 四1,王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都有24张。问王亮和李强原来各有画片多少张?2,甲、乙、丙三个小朋友各有玻璃球若干个,如果甲按乙现有的玻璃球个数给乙,再按丙现有的个数给丙之后,乙也按甲、丙现有的个数分别给甲、丙。最后,丙也按同样的方法给甲、乙,这时,他们三个人都有32个玻璃球。原来每人各有多少个?3,书架上分上、中、下三层,共放192本书。现从上层出与中层同样多的
36、书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的同样多的书放到上层,这时三书架所放的书本数相等。这个书架上中下各层原来各放多少本书?第58页/共75页例5:两只猴子拿26个桃,甲猴眼急手快,抢先得到,乙看甲猴拿得太多,就抢去一半;甲猴不服,又从乙猴那儿抢走一半;乙猴不服,甲猴就还给乙猴5个,这时乙猴比甲猴多5个。问甲猴最初准备拿几个?分析与解答:先求出两个猴现在各拿多少,根据“有26个桃”和“这时乙猴比甲猴多2个”,可知乙猴现在拿(262)2=14个,甲猴现在拿2614=12个。甲猴从乙猴那儿抢走一半,又还给乙猴5个后有12个,如果甲猴不还给乙猴,那么甲猴有125=
37、17个;如果甲猴不抢乙猴一半,那么乙猴现在有(2617)2=18个。乙猴看甲猴拿得太多,抢去甲猴的一半后有18个,如果不抢,那么甲猴最初准备拿(2618)2=16个。第59页/共75页练 习 五1,学校运来36棵树苗,小强和小萍两人争着去栽。小强先拿了树苗若干棵,小萍看到小强拿太多了就抢了10棵,小强不肯,又从小萍那里抢了6棵,这时小强拿的棵数是小萍的2倍。问最初小强准备拿多少棵?2,李辉和张新各搬60本图书,李辉抢先拿了若干本,张新看李辉拿了太多,就抢了一半;李辉不肯,张新就给了他10本。这时李辉比张新多4本。问最初李辉拿了多少本?3,有甲、乙、丙三个数,从甲数中拿出15加到乙数,再从乙数中
38、拿出18加到丙数,最后从丙数拿出12加到甲数,这时三个数都是180。问甲、乙、丙三个数原来各是多少?第60页/共75页第三十二周 逻辑推理第61页/共75页专题简析:解答推理问题常用的方法有:排除法、假设法、反证法。一般可以从以下几方面考虑:1,选准突破口,分析时综合几个条件进行判断;2,根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论;3,对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的;4,遇到比较复杂的推理问题,可以借助图表进行分析。第62页/共75页例1:有三个小朋友们在谈论谁做的好事多。冬冬说:“兰兰做的比静静多。”兰兰说
39、:“冬冬做的比静静多。”静静说:“兰兰做的比冬冬少。”这三位小朋友中,谁做的好事最多?谁做的好事最少?分析与解答:我们用“”来表示每个小朋友之间做好事多少的关系。兰兰静静 冬冬静静 冬冬兰兰所以,冬冬兰兰静静,冬冬做的好事最多,静静做的最少。第63页/共75页练 习 一1,卢刚、丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。问:谁是工程师、谁是医生、谁是飞行员?2,小李、小徐和小张是同学,大学毕业后分别当了教师、数学家和工程师。小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。谁是教师、谁是数学家、谁是工程师?3
40、,江波、刘晓、吴萌三个老师,其中一位教语文,一位教数学,一位教英语。已知:江波和语文老师是邻居;吴萌和语文老师不是邻居;吴萌和数学老师是同学。请问:三个老师分别教什么科目?第64页/共75页例3:甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。”乙说:“我没有打碎破璃。”丙说:“是乙打碎的。”他们当中有一个人说了谎话,到底是谁打碎了玻璃?分析与解答:由题意推出结论,必须符合他们中只有一个人说了谎,推理时可先假设,看结论和条件是否矛盾。如果是甲打碎的,那么甲说谎话,乙说的是真话,丙说的是谎话。这样两人说的是谎话,与他们中只有一人说谎相矛盾,所以不是甲打碎的。如果是乙打碎的,那么甲说的是谎话
41、,乙说的是谎话,丙说的是真话,与他们中只有一人说谎相矛盾,所以不是乙打碎的。如果是丙打碎的,那么甲说的是真话,乙说的是真话,而丙说的是谎话。这样有两个说的是真话,符合条件中只有一个人说的是谎话,所以玻璃是丙打碎的。第65页/共75页练 习 三1,已知甲、乙、丙三人中,只有一人会开汽车。甲说:“我会开汽车。”乙说:“我不会开。”丙说:“甲不会开汽车。”如果三人中只有一人讲的是真话,那么谁会开汽车?2,某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。A说:“是B做的。”B说:“不是我做的。”C说:“不是我做的。”这三个学生中只有一人说了实话,这件好事是谁做的?3,A、B、C、D四个孩子
42、踢球打碎了玻璃。A说:“是C或D打碎的。”B说:“是D打碎的。”C说:“我没有打碎玻璃。”D说:“不是我打碎的。”他们中只有一个人说了谎,到底是谁打碎了玻璃?第66页/共75页例4:甲、乙、丙、丁四个人同时参加数学竞赛。最后:甲说:“丙是第一名,我是第三名。”乙说:“我是第一名,丁是第四名。”丙说:“丁是第一名,我是第三名。”丁没有说话。成绩揭晓时,大家发现甲、乙、丙三个人各说对了一半。你能说出他们的名次吗?分析与解答:推理时,必须以“他们都只说对了一半”为前提。为了帮助分析,我们可以借助图表进行分析。甲 丙(1)甲(3)乙 乙(1)丁(4)丙 丁(2)丙(3)第67页/共75页1)乙说“我是
43、第一名”也是错的,而乙说“丁是第四名”是对的。(2)由丁是第四名推出丙说“丁是第二名”是错的,根据条件,丙说“我是第三名”是对的。(3)这样,丙既是第一名,又是第三名,自然是错的。甲 丙(1)甲(3)乙 乙(1)丁(4)丙 丁(2)丙(3)第68页/共75页重新推理:(1)由甲说的“我是第一名”推出丙说的“我是第三名”是错的,而丙说的“我是第一名”是对的。(2)由“丁第二名”推出乙说的“丁是第四名”是错的,而乙说的“我是第一名”是对的。(3)从表中我们可看出:乙是第一名,丁是第二名,甲是第三名,丙是第四名。第69页/共75页练 习 四1甲、乙、丙、丁四个人进行游泳比赛,赛前名次众说不一。有的说
44、:“甲是第二名,丁是第三名。”有的说:“甲是第一名,丁是第二名。”有的说:“丙是第二名,丁是第四名。”实际上,上面三种说法各说对了一半。甲、乙、丙、丁各是第几名?2,红、黄、蓝、白、紫五种颜色的珠子各一颗,用纸包着放在桌子上一排。甲、乙、丙、丁、戌五个人猜各包里的珠子的颜色。甲猜:“第二包紫色,第三包黄色。”乙猜:“第二名蓝色,第四包红色。”丙猜:“第三包蓝色,第五包白色。”丁猜:“第三包蓝色,第五包白色。”戌猜:“第二包黄色,第五包紫色。”结果每个人都猜对了一半,他们各猜对了哪种颜色的珠子?第70页/共75页3,张老师要五个同学给鄱阳湖、洞庭湖、太湖、巢湖和洪泽湖每个湖泊写上号码,这五个同学
45、只认对了一半。他们是这样回答的:甲:2是巢湖,3是洞庭湖;乙:4是鄱阳湖,2是洪泽湖;丙:1是鄱阳湖,5是太湖;丁:4是太湖,3是洪泽湖;戌:2是洞庭湖,5是巢湖。请写出各个号码所代表的湖泊。第71页/共75页例5:A、B、C、D与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计:A赛了4盘,B赛了3盘,C赛了2盘,D赛了一盘。问小强已经赛了几盘?分析与解答:用五个点表示这5个人,如果某两个之间已经进行了比赛,就在表示这两个人的点之间画一条线。现在A赛4盘,所以A应该与其余4个点都连线。B赛了3盘,由于D只赛了1盘,是和A赛的,所以B应该与C连。(B、A已连线)C已连了2条线,小强也连了2条线,所以小强已赛了2盘。小强 AD C B第72页/共75页练 习 五1,上海、辽宁、北京、山东四个足球队进行循环赛,到现在为止,上海队赛了3场,辽宁队赛了2场,山东队赛了1场。问北京队赛了几场?2,明明、冬冬、兰兰、静静、思思和毛毛六人参加一次会议,见面时每两个人都要握一次手。明明已握了5次手,冬冬握了4次手,兰兰握了5次手,静静握了2次,思思握了1次手。问毛毛握了几次手?3,甲、乙、丙、丁比赛乒乓球,每两人都要赛一场。结果甲胜了丁,并且甲、乙、丙三人胜的场数相同。问丁胜了几场?第73页/共75页第74页/共75页感谢您的观看!第75页/共75页
限制150内